Predictive model for daily risk alerts in sepsis patients in the ICU: visualization and clinical analysis of risk indicators.

IF 5.1 4区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Precision Clinical Medicine Pub Date : 2025-02-08 eCollection Date: 2025-03-01 DOI:10.1093/pcmedi/pbaf003
Hao Yang, Jiaxi Li, Chi Zhang, Alejandro Pazos Sierra, Bairong Shen
{"title":"Predictive model for daily risk alerts in sepsis patients in the ICU: visualization and clinical analysis of risk indicators.","authors":"Hao Yang, Jiaxi Li, Chi Zhang, Alejandro Pazos Sierra, Bairong Shen","doi":"10.1093/pcmedi/pbaf003","DOIUrl":null,"url":null,"abstract":"<p><p>This study introduces a novel Transformer-based time-series framework designed to revolutionize risk stratification in Intensive Care Units (ICUs) by predicting patient outcomes with high temporal precision. Leveraging sequential data from the eICU database, our two-stage architecture dynamically captures evolving health trajectories throughout a patient's ICU stay, enabling real-time identification of high-risk individuals and actionable insights for personalized interventions. The model demonstrated exceptional predictive power, achieving a progressive AUC increase from 0.87 (±0.021) on admission day to 0.92 (±0.009) by day 5, reflecting its capacity to assimilate longitudinal physiological patterns. Rigorous external validation across geographically diverse cohorts-including an 81.8% accuracy on Chinese sepsis data (AUC=0.73) and 76.56% accuracy on MIMIC-IV-3.1 (AUC=0.84)-confirmed robust generalizability. Crucially, SHAP-derived temporal heatmaps unveiled mortality-associated feature dynamics over time, bridging the gap between model predictions and clinically interpretable biomarkers. These findings establish a new paradigm for ICU prognostics, where data-driven temporal modeling synergizes with clinician expertise to optimize triage, reduce diagnostic latency, and ultimately improve survival outcomes in critical care.</p>","PeriodicalId":33608,"journal":{"name":"Precision Clinical Medicine","volume":"8 1","pages":"pbaf003"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11878768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Clinical Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/pcmedi/pbaf003","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel Transformer-based time-series framework designed to revolutionize risk stratification in Intensive Care Units (ICUs) by predicting patient outcomes with high temporal precision. Leveraging sequential data from the eICU database, our two-stage architecture dynamically captures evolving health trajectories throughout a patient's ICU stay, enabling real-time identification of high-risk individuals and actionable insights for personalized interventions. The model demonstrated exceptional predictive power, achieving a progressive AUC increase from 0.87 (±0.021) on admission day to 0.92 (±0.009) by day 5, reflecting its capacity to assimilate longitudinal physiological patterns. Rigorous external validation across geographically diverse cohorts-including an 81.8% accuracy on Chinese sepsis data (AUC=0.73) and 76.56% accuracy on MIMIC-IV-3.1 (AUC=0.84)-confirmed robust generalizability. Crucially, SHAP-derived temporal heatmaps unveiled mortality-associated feature dynamics over time, bridging the gap between model predictions and clinically interpretable biomarkers. These findings establish a new paradigm for ICU prognostics, where data-driven temporal modeling synergizes with clinician expertise to optimize triage, reduce diagnostic latency, and ultimately improve survival outcomes in critical care.

ICU脓毒症患者每日风险预警预测模型:风险指标可视化及临床分析
本研究介绍了一种新颖的基于变压器的时间序列框架,旨在通过高时间精度预测患者预后,彻底改变重症监护病房(icu)的风险分层。利用eICU数据库的顺序数据,我们的两阶段架构动态捕捉患者在ICU住院期间不断变化的健康轨迹,从而实时识别高风险个体,并为个性化干预提供可操作的见解。该模型显示出卓越的预测能力,AUC从入院当天的0.87(±0.021)逐渐增加到第5天的0.92(±0.009),反映了其吸收纵向生理模式的能力。在不同地理位置的队列中进行严格的外部验证,包括对中国败血症数据的81.8%准确率(AUC=0.73)和对MIMIC-IV-3.1的76.56%准确率(AUC=0.84),证实了稳健的泛化性。至关重要的是,shap衍生的时间热图揭示了随时间变化的死亡率相关特征动态,弥合了模型预测与临床可解释的生物标志物之间的差距。这些发现为ICU预后建立了一个新的范例,其中数据驱动的时间建模与临床医生的专业知识协同,以优化分诊,减少诊断延迟,并最终提高重症监护的生存结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Clinical Medicine
Precision Clinical Medicine MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
10.80
自引率
0.00%
发文量
26
审稿时长
5 weeks
期刊介绍: Precision Clinical Medicine (PCM) is an international, peer-reviewed, open access journal that provides timely publication of original research articles, case reports, reviews, editorials, and perspectives across the spectrum of precision medicine. The journal's mission is to deliver new theories, methods, and evidence that enhance disease diagnosis, treatment, prevention, and prognosis, thereby establishing a vital communication platform for clinicians and researchers that has the potential to transform medical practice. PCM encompasses all facets of precision medicine, which involves personalized approaches to diagnosis, treatment, and prevention, tailored to individual patients or patient subgroups based on their unique genetic, phenotypic, or psychosocial profiles. The clinical conditions addressed by the journal include a wide range of areas such as cancer, infectious diseases, inherited diseases, complex diseases, and rare diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信