Phased ERK responsiveness and developmental robustness regulate teleost skin morphogenesis.

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Nitya Ramkumar, Christian Richardson, Makinnon O'Brien, Faraz Ahmed Butt, Jieun Park, Anna T Chao, Michel Bagnat, Kenneth D Poss, Stefano Di Talia
{"title":"Phased ERK responsiveness and developmental robustness regulate teleost skin morphogenesis.","authors":"Nitya Ramkumar, Christian Richardson, Makinnon O'Brien, Faraz Ahmed Butt, Jieun Park, Anna T Chao, Michel Bagnat, Kenneth D Poss, Stefano Di Talia","doi":"10.1073/pnas.2410430122","DOIUrl":null,"url":null,"abstract":"<p><p>Elongation of the vertebrate embryonic axis necessitates rapid expansion of the epidermis to accommodate the growth of underlying tissues. Here, we generated a toolkit to visualize and quantify signaling in entire cell populations of the periderm, the outermost layer of the epidermis, in live developing zebrafish. We find that oriented cell divisions facilitate growth of the early periderm during axial elongation rather than cell addition from the basal layer. Activity levels of Extracellular signal-regulated kinase (ERK), a downstream effector of the MAPK pathway, gauged by a live biosensor, predict cell cycle entry, and optogenetic ERK activation regulates cell cycling dynamics. As development proceeds, rates of peridermal cell proliferation decrease, and ERK activity becomes more pulsatile and functionally transitions to promote hypertrophic cell growth. Targeted genetic blockade of cell division generates animals with oversized periderm cells, yet, unexpectedly, development to adulthood is not impaired. Our findings reveal stage-dependent differential responsiveness to ERK signaling and marked developmental robustness in growing teleost skin.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 10","pages":"e2410430122"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2410430122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Elongation of the vertebrate embryonic axis necessitates rapid expansion of the epidermis to accommodate the growth of underlying tissues. Here, we generated a toolkit to visualize and quantify signaling in entire cell populations of the periderm, the outermost layer of the epidermis, in live developing zebrafish. We find that oriented cell divisions facilitate growth of the early periderm during axial elongation rather than cell addition from the basal layer. Activity levels of Extracellular signal-regulated kinase (ERK), a downstream effector of the MAPK pathway, gauged by a live biosensor, predict cell cycle entry, and optogenetic ERK activation regulates cell cycling dynamics. As development proceeds, rates of peridermal cell proliferation decrease, and ERK activity becomes more pulsatile and functionally transitions to promote hypertrophic cell growth. Targeted genetic blockade of cell division generates animals with oversized periderm cells, yet, unexpectedly, development to adulthood is not impaired. Our findings reveal stage-dependent differential responsiveness to ERK signaling and marked developmental robustness in growing teleost skin.

分阶段的ERK反应能力和发育稳健性调控远足类动物的皮肤形态发生。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信