The third dimension of alpine plant leaf traits is related to cold-tolerance.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Plant Diversity Pub Date : 2024-10-12 eCollection Date: 2025-01-01 DOI:10.1016/j.pld.2024.10.001
Yuan Wang, Ji Suonan, Kun Liu, Yanni Gao, Sihao Zhu, Qian Liu, Ning Zhao
{"title":"The third dimension of alpine plant leaf traits is related to cold-tolerance.","authors":"Yuan Wang, Ji Suonan, Kun Liu, Yanni Gao, Sihao Zhu, Qian Liu, Ning Zhao","doi":"10.1016/j.pld.2024.10.001","DOIUrl":null,"url":null,"abstract":"<p><p>Alpine plants possess unique traits to adapt alpine environments. Whether leaf trait relationships of alpine plants can be captured by the two trait dimensions of organ size and resource economics is unknown. We hypothesized that, beyond the trait dimensions of leaf size and resource economics, non-structured carbohydrates (NSC) would reflect a dimension of cold-tolerance in alpine plants. To test this hypothesis, we measured 12 leaf traits critical to leaf construction and growth in 143 species across 7 sites ranging from alpine steppes to alpine meadows along an environmental gradient on the Tibetan Plateau. Furthermore, a cold resistance experiment was conducted at one of these sites to estimate the lethal temperature causing 50% frost damage (LT<sub>50</sub>) of 11 alpine species. The majority of variations in 12 leaf traits of alpine plants were captured by three trait axes, in which leaf carbon (LCC) and NSC (including leaf starch; LSC and leaf soluble sugars; LSS) were clustered in a new dimension (PC3) beyond leaf size and structure, and resource economics. Although LCC, LSC and LSS all showed negative correlations with mean annual temperature, a significant negative correlation was only found between LSS and LT<sub>50</sub>. It indicated that PC3 was able to reflect the cold-tolerance of alpine plants to some extent, in which LSS was the most critical trait. The storage and transformation of NSC under stressful conditions could reflect a dimension of long-term metabolic adaptation and cold-tolerance, which is an extension of the resource-utilization strategy beyond construction cost and growth.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"159-165"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873570/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.10.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Alpine plants possess unique traits to adapt alpine environments. Whether leaf trait relationships of alpine plants can be captured by the two trait dimensions of organ size and resource economics is unknown. We hypothesized that, beyond the trait dimensions of leaf size and resource economics, non-structured carbohydrates (NSC) would reflect a dimension of cold-tolerance in alpine plants. To test this hypothesis, we measured 12 leaf traits critical to leaf construction and growth in 143 species across 7 sites ranging from alpine steppes to alpine meadows along an environmental gradient on the Tibetan Plateau. Furthermore, a cold resistance experiment was conducted at one of these sites to estimate the lethal temperature causing 50% frost damage (LT50) of 11 alpine species. The majority of variations in 12 leaf traits of alpine plants were captured by three trait axes, in which leaf carbon (LCC) and NSC (including leaf starch; LSC and leaf soluble sugars; LSS) were clustered in a new dimension (PC3) beyond leaf size and structure, and resource economics. Although LCC, LSC and LSS all showed negative correlations with mean annual temperature, a significant negative correlation was only found between LSS and LT50. It indicated that PC3 was able to reflect the cold-tolerance of alpine plants to some extent, in which LSS was the most critical trait. The storage and transformation of NSC under stressful conditions could reflect a dimension of long-term metabolic adaptation and cold-tolerance, which is an extension of the resource-utilization strategy beyond construction cost and growth.

Abstract Image

Abstract Image

Abstract Image

高山植物叶片特征的第三维度与耐寒性有关。
高山植物具有适应高山环境的独特性状。高山植物叶片性状之间的关系能否通过器官大小和资源经济性两个性状维度来体现,目前尚不清楚。我们假设,除了叶片大小和资源经济的性状维度外,非结构性碳水化合物(NSC)还反映了高山植物的耐寒性维度。为了验证这一假设,我们在青藏高原沿环境梯度从高山草原到高山草甸的7个地点测量了143个物种的12个叶片特征,这些特征对叶片的结构和生长至关重要。此外,在其中一个地点进行了抗寒性试验,估算了11种高山植物50%冻害(LT50)致死温度。高寒植物12个叶片性状的变异主要集中在3个性状轴上,其中叶片碳(LCC)和NSC(包括叶片淀粉;LSC和叶可溶性糖;在叶片大小、结构和资源经济之外的一个新维度(PC3)上聚类。LCC、LSC和LSS均与年平均气温呈负相关,但LSS与LT50呈显著负相关。说明PC3能在一定程度上反映高山植物的耐寒性,其中LSS是最关键的性状。胁迫条件下NSC的储存和转化反映了植物长期代谢适应和耐寒性的一个维度,是植物资源利用策略在建设成本和生长之外的延伸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Diversity
Plant Diversity Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍: Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that advance our understanding of the past and current distribution of plants, contribute to the development of more phylogenetically accurate taxonomic classifications, present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists. While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance. Fields covered by the journal include: plant systematics and taxonomy- evolutionary developmental biology- reproductive biology- phylo- and biogeography- evolutionary ecology- population biology- conservation biology- palaeobotany- molecular evolution- comparative and evolutionary genomics- physiology- biochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信