The evolutionarily diverged single-stranded DNA-binding proteins SSB1/SSB2 differentially affect the replication, recombination and mutation of organellar genomes in Arabidopsis thaliana.
Weidong Zhu, Jie Qian, Yingke Hou, Luke R Tembrock, Liyun Nie, Yi-Feng Hsu, Yong Xiang, Yi Zou, Zhiqiang Wu
{"title":"The evolutionarily diverged single-stranded DNA-binding proteins SSB1/SSB2 differentially affect the replication, recombination and mutation of organellar genomes in <i>Arabidopsis thaliana</i>.","authors":"Weidong Zhu, Jie Qian, Yingke Hou, Luke R Tembrock, Liyun Nie, Yi-Feng Hsu, Yong Xiang, Yi Zou, Zhiqiang Wu","doi":"10.1016/j.pld.2024.11.001","DOIUrl":null,"url":null,"abstract":"<p><p>Single-stranded DNA-binding proteins (SSBs) play essential roles in the replication, recombination and repair processes of organellar DNA molecules. In <i>Arabidopsis thaliana</i>, SSBs are encoded by a small family of two genes (<i>SSB1</i> and <i>SSB2</i>). However, the functional divergence of these two <i>SSB</i> copies in plants remains largely unknown, and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete. In this study, phylogenetic, gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants. Based on accurate long-read sequencing results, <i>ssb1</i> and <i>ssb2</i> mutants had decreased copy numbers for both mitochondrial DNA (mtDNA) and plastid DNA (ptDNA), accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes. Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"127-135"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873582/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.11.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Single-stranded DNA-binding proteins (SSBs) play essential roles in the replication, recombination and repair processes of organellar DNA molecules. In Arabidopsis thaliana, SSBs are encoded by a small family of two genes (SSB1 and SSB2). However, the functional divergence of these two SSB copies in plants remains largely unknown, and detailed studies regarding their roles in the replication and recombination of organellar genomes are still incomplete. In this study, phylogenetic, gene structure and protein motif analyses all suggested that SSB1 and SSB2 probably diverged during the early evolution of seed plants. Based on accurate long-read sequencing results, ssb1 and ssb2 mutants had decreased copy numbers for both mitochondrial DNA (mtDNA) and plastid DNA (ptDNA), accompanied by a slight increase in structural rearrangements mediated by intermediate-sized repeats in mt genome and small-scale variants in both genomes. Our findings provide an important foundation for further investigating the effects of DNA dosage in the regulation of mutation frequencies in plant organellar genomes.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry