Monitoring chalcogenide ions-guided in situ transform active sites of tailored bismuth electrocatalysts for CO2 reduction to formate.

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zheng Chen, Yi Xiao, Xianji Qiao, Honghui Ou, Chi-Feng Lee, Hsiao-Tsu Wang, Yu-Cheng Shao, Lili Han
{"title":"Monitoring chalcogenide ions-guided in situ transform active sites of tailored bismuth electrocatalysts for CO<sub>2</sub> reduction to formate.","authors":"Zheng Chen, Yi Xiao, Xianji Qiao, Honghui Ou, Chi-Feng Lee, Hsiao-Tsu Wang, Yu-Cheng Shao, Lili Han","doi":"10.1073/pnas.2420922122","DOIUrl":null,"url":null,"abstract":"<p><p>Although bismuth catalysts enable accelerated electrochemical CO<sub>2</sub>-to-formate conversion, the intrinsic active sites and forming mechanisms under operating conditions remain elusive. Herein, we prepared Bi<sub>2</sub>O<sub>2</sub>NCN, Bi<sub>2</sub>O<sub>3</sub>, and Bi<sub>2</sub>O<sub>2</sub>S as precatalysts. Among them, Bi<sub>2</sub>O<sub>2</sub>NCN-derived catalyst possesses optimum performance of electrochemical CO<sub>2</sub>-to-formate, exhibiting an upsurge of Faradaic efficiency to 98.3% at -0.6 V vs. reversible hydrogen electrodes. In-situ infrared and electrochemical impedance spectra trace and interpret the superior performance. Multimodal structural analyses utilizing quasi-in-situ X-ray diffraction, in-situ X-ray absorption near edge structure and in-situ Raman spectra provide powerful support to monitoring the catalysts' in-situ transforms to metallic Bi, identifying the formation of the active sites influenced by the chalcogenide ions-guided: Carbodiimide promotes to form of the dominant Bi(003) facet exposure, which distinguishes from sulfide- and oxide-preferred dominant Bi(012) facets exposure. Concurrently, theoretical insights garnered from multiscale/multilevel computational analyses harmoniously corroborate the experimental findings. These findings show the pivotal role of chalcogenide in tailoring bismuth electrocatalysts for selective CO<sub>2</sub> reduction to formate, illuminating the significance of controlling structural chemistry in designing catalysts toward high-efficiency renewable energy conversion.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"122 10","pages":"e2420922122"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11912470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2420922122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Although bismuth catalysts enable accelerated electrochemical CO2-to-formate conversion, the intrinsic active sites and forming mechanisms under operating conditions remain elusive. Herein, we prepared Bi2O2NCN, Bi2O3, and Bi2O2S as precatalysts. Among them, Bi2O2NCN-derived catalyst possesses optimum performance of electrochemical CO2-to-formate, exhibiting an upsurge of Faradaic efficiency to 98.3% at -0.6 V vs. reversible hydrogen electrodes. In-situ infrared and electrochemical impedance spectra trace and interpret the superior performance. Multimodal structural analyses utilizing quasi-in-situ X-ray diffraction, in-situ X-ray absorption near edge structure and in-situ Raman spectra provide powerful support to monitoring the catalysts' in-situ transforms to metallic Bi, identifying the formation of the active sites influenced by the chalcogenide ions-guided: Carbodiimide promotes to form of the dominant Bi(003) facet exposure, which distinguishes from sulfide- and oxide-preferred dominant Bi(012) facets exposure. Concurrently, theoretical insights garnered from multiscale/multilevel computational analyses harmoniously corroborate the experimental findings. These findings show the pivotal role of chalcogenide in tailoring bismuth electrocatalysts for selective CO2 reduction to formate, illuminating the significance of controlling structural chemistry in designing catalysts toward high-efficiency renewable energy conversion.

监测硫族离子引导下定制铋电催化剂的原位转化活性位点,用于CO2还原成甲酸盐。
虽然铋催化剂能够加速二氧化碳到甲酸的电化学转化,但在操作条件下的内在活性位点和形成机制仍然是未知的。在此,我们制备了Bi2O2NCN、Bi2O3和Bi2O2S作为预催化剂。其中,bi2o2ncn衍生催化剂具有最佳的电化学co2 -to-甲酸酯性能,与可逆氢电极相比,在-0.6 V时法拉第效率提高到98.3%。现场红外和电化学阻抗谱追踪和解释了其优越的性能。利用准原位x射线衍射、原位x射线吸收近边结构和原位拉曼光谱的多模态结构分析为监测催化剂向金属Bi的原位转变提供了有力的支持,确定了硫族离子引导下活性位点的形成:碳二亚胺促进了优势Bi(003)面暴露的形成,这与硫化物和氧化物偏好的优势Bi(012)面暴露不同。同时,从多尺度/多层次计算分析中获得的理论见解和谐地证实了实验结果。这些发现表明,硫族化物在定制铋电催化剂以选择性还原CO2生成甲酸盐方面发挥了关键作用,阐明了控制结构化学在设计高效可再生能源转化催化剂中的重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信