Subgenome asymmetry of gibberellins-related genes plays important roles in regulating rapid growth of bamboos.

IF 6.3 1区 生物学 Q1 PLANT SCIENCES
Plant Diversity Pub Date : 2024-10-25 eCollection Date: 2025-01-01 DOI:10.1016/j.pld.2024.10.004
Ling Mao, Cen Guo, Liang-Zhong Niu, Yu-Jiao Wang, Guihua Jin, Yi-Zhou Yang, Ke-Cheng Qian, Yang Yang, Xuemei Zhang, Peng-Fei Ma, De-Zhu Li, Zhen-Hua Guo
{"title":"Subgenome asymmetry of gibberellins-related genes plays important roles in regulating rapid growth of bamboos.","authors":"Ling Mao, Cen Guo, Liang-Zhong Niu, Yu-Jiao Wang, Guihua Jin, Yi-Zhou Yang, Ke-Cheng Qian, Yang Yang, Xuemei Zhang, Peng-Fei Ma, De-Zhu Li, Zhen-Hua Guo","doi":"10.1016/j.pld.2024.10.004","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid growth is an innovative trait of woody bamboos that has been widely studied. However, the genetic basis and evolution of this trait are poorly understood. Taking advantage of genomic resources of 11 representative bamboos at different ploidal levels, we integrated morphological, physiological, and transcriptomic datasets to investigate rapid growth. In particular, these bamboos include two large-sized and a small-sized woody species, compared with a diploid herbaceous species. Our results showed that gibberellin A1 was important for the rapid shoot growth of the world's largest bamboo, <i>Dendrocalamus sinicus</i>, and indicated that two gibberellins (GAs)-related genes, <i>KAO</i> and <i>SLRL1</i>, were key to the rapid shoot growth and culm size in woody bamboos. The expression of GAs-related genes exhibited significant subgenome asymmetry with subgenomes A and C demonstrating expression dominance in the large-sized woody bamboos while the generally submissive subgenomes B and D dominating in the small-sized species. The subgenome asymmetry was found to be correlated with the subgenome-specific gene structure, particularly UTRs and core promoters. Our study provides novel insights into the molecular mechanism and evolution of rapid shoot growth following allopolyploidization in woody bamboos, particularly via subgenome asymmetry. These findings are helpful for understanding of how polyploidization in general and subgenome asymmetry in particular contributed to the origin of innovative traits in plants.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":"47 1","pages":"68-81"},"PeriodicalIF":6.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11873579/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2024.10.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid growth is an innovative trait of woody bamboos that has been widely studied. However, the genetic basis and evolution of this trait are poorly understood. Taking advantage of genomic resources of 11 representative bamboos at different ploidal levels, we integrated morphological, physiological, and transcriptomic datasets to investigate rapid growth. In particular, these bamboos include two large-sized and a small-sized woody species, compared with a diploid herbaceous species. Our results showed that gibberellin A1 was important for the rapid shoot growth of the world's largest bamboo, Dendrocalamus sinicus, and indicated that two gibberellins (GAs)-related genes, KAO and SLRL1, were key to the rapid shoot growth and culm size in woody bamboos. The expression of GAs-related genes exhibited significant subgenome asymmetry with subgenomes A and C demonstrating expression dominance in the large-sized woody bamboos while the generally submissive subgenomes B and D dominating in the small-sized species. The subgenome asymmetry was found to be correlated with the subgenome-specific gene structure, particularly UTRs and core promoters. Our study provides novel insights into the molecular mechanism and evolution of rapid shoot growth following allopolyploidization in woody bamboos, particularly via subgenome asymmetry. These findings are helpful for understanding of how polyploidization in general and subgenome asymmetry in particular contributed to the origin of innovative traits in plants.

赤霉素相关基因的亚基因组不对称在竹的快速生长调控中起重要作用。
快速生长是木本竹的一种创新性状,已被广泛研究。然而,人们对这种性状的遗传基础和进化知之甚少。利用11种具有代表性的不同倍体水平竹的基因组资源,综合形态、生理和转录组学数据,研究了竹的快速生长。特别是,这些竹包括两个大的和一个小的木本品种,而不是一个二倍体草本品种。结果表明,赤霉素A1对世界上最大的竹材赤竹(Dendrocalamus sinicus)茎部的快速生长起着重要作用,两个赤霉素相关基因KAO和SLRL1对木本竹材茎部的快速生长和茎部的大小起着关键作用。gas相关基因的表达表现出显著的亚基因组不对称性,其中A和C亚基因组在大型木本竹材中表达显性,而B和D亚基因组在小型木本竹材中表达显性。亚基因组不对称与亚基因组特异性基因结构有关,尤其是UTRs和核心启动子。我们的研究为木本竹异源多倍体化后快速芽生长的分子机制和进化提供了新的见解,特别是通过亚基因组不对称。这些发现有助于理解植物多倍体化和亚基因组不对称对植物创新性状起源的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Diversity
Plant Diversity Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍: Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that advance our understanding of the past and current distribution of plants, contribute to the development of more phylogenetically accurate taxonomic classifications, present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists. While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance. Fields covered by the journal include: plant systematics and taxonomy- evolutionary developmental biology- reproductive biology- phylo- and biogeography- evolutionary ecology- population biology- conservation biology- palaeobotany- molecular evolution- comparative and evolutionary genomics- physiology- biochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信