Anna-Lena Gehl, Daniel Klawitter, Ulrich Wissenbach, Marnie Cole, Christine Wesely, Heidi Löhr, Petra Weissgerber, Adela Sota, Markus R Meyer, Claudia Fecher-Trost
{"title":"The proteomic landscape of trophoblasts unravels calcium-dependent syncytialization processes and beta-chorionic gonadotropin (ß-hCG) production.","authors":"Anna-Lena Gehl, Daniel Klawitter, Ulrich Wissenbach, Marnie Cole, Christine Wesely, Heidi Löhr, Petra Weissgerber, Adela Sota, Markus R Meyer, Claudia Fecher-Trost","doi":"10.1186/s12958-025-01362-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The syncytiotrophoblast (STB) layer of the placenta is formed by cell fusion of cytotrophoblasts, acts as a feto-maternal barrier, is required for the production of pregnancy hormones such as chorionic gonadotropin, estradiol and progesterone and is also responsible for feto-maternal mineral exchange such as calcium. Adequate mineral supply and placental hormone production are essential for the maintenance of pregnancy, and disturbances in trophoblast integrity are associated with pregnancy complications. Since knowledge about the identity and expression levels of proteins in trophoblast and syncytiotrophoblast cells is limited so far, we analyzed the proteomes of trophoblast-like and syncytiotrophoblast-like BeWo cells under different calcium conditions. The investigation of protein expression profiles in combination with hormone assays can provide a better understanding of calcium-dependent cellular processes in trophoblasts and syncytiotrophoblasts.</p><p><strong>Methods: </strong>Here, we combine human trophoblast model cell cultures, hormone assays, antibody-based detection methods and high-resolution mass spectrometry analyzes to assess changes in cellular processes during syncytialization.</p><p><strong>Results: </strong>We monitored the changes in protein expression profiles during forskolin induced syncytialization of trophoblast-like cells in an unbiased manner and show that the expression of numerous proteins is strongly altered. Among them are enzymes of the glucocorticoid and sex hormones synthesis pathways such as cytochrome P450 (CYP) 19A1, CYP11A1, adrenodoxin (FDX1), hydroxysteroid dehydrogenase (HSD) 11β2 and HSD17β1, whose expression is strongly induced by syncytialization. The production of beta human chorionic gonadotropin (ß-hCG), progesterone and estradiol increase during syncytialization, while the secretion and synthesis of ß-hCG and the expression of several protein syncytiotrophoblast markers show a clear calcium dependence.</p><p><strong>Conclusion: </strong>The broad applicability of semi-quantitative proteome profiling of cytotrophoblast- and syncytiotrophoblast-like cells provides new insights into signaling processes that occur in cytotrophoblasts /syncytiotrophoblasts during pregnancy.</p>","PeriodicalId":21011,"journal":{"name":"Reproductive Biology and Endocrinology","volume":"23 1","pages":"33"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Biology and Endocrinology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12958-025-01362-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The syncytiotrophoblast (STB) layer of the placenta is formed by cell fusion of cytotrophoblasts, acts as a feto-maternal barrier, is required for the production of pregnancy hormones such as chorionic gonadotropin, estradiol and progesterone and is also responsible for feto-maternal mineral exchange such as calcium. Adequate mineral supply and placental hormone production are essential for the maintenance of pregnancy, and disturbances in trophoblast integrity are associated with pregnancy complications. Since knowledge about the identity and expression levels of proteins in trophoblast and syncytiotrophoblast cells is limited so far, we analyzed the proteomes of trophoblast-like and syncytiotrophoblast-like BeWo cells under different calcium conditions. The investigation of protein expression profiles in combination with hormone assays can provide a better understanding of calcium-dependent cellular processes in trophoblasts and syncytiotrophoblasts.
Methods: Here, we combine human trophoblast model cell cultures, hormone assays, antibody-based detection methods and high-resolution mass spectrometry analyzes to assess changes in cellular processes during syncytialization.
Results: We monitored the changes in protein expression profiles during forskolin induced syncytialization of trophoblast-like cells in an unbiased manner and show that the expression of numerous proteins is strongly altered. Among them are enzymes of the glucocorticoid and sex hormones synthesis pathways such as cytochrome P450 (CYP) 19A1, CYP11A1, adrenodoxin (FDX1), hydroxysteroid dehydrogenase (HSD) 11β2 and HSD17β1, whose expression is strongly induced by syncytialization. The production of beta human chorionic gonadotropin (ß-hCG), progesterone and estradiol increase during syncytialization, while the secretion and synthesis of ß-hCG and the expression of several protein syncytiotrophoblast markers show a clear calcium dependence.
Conclusion: The broad applicability of semi-quantitative proteome profiling of cytotrophoblast- and syncytiotrophoblast-like cells provides new insights into signaling processes that occur in cytotrophoblasts /syncytiotrophoblasts during pregnancy.
期刊介绍:
Reproductive Biology and Endocrinology publishes and disseminates high-quality results from excellent research in the reproductive sciences.
The journal publishes on topics covering gametogenesis, fertilization, early embryonic development, embryo-uterus interaction, reproductive development, pregnancy, uterine biology, endocrinology of reproduction, control of reproduction, reproductive immunology, neuroendocrinology, and veterinary and human reproductive medicine, including all vertebrate species.