Adduct-catalyzed tandem electro-thermal synthesis of organophosphorus (III) compounds from white phosphorus.

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-01-14 eCollection Date: 2025-03-01 DOI:10.1093/nsr/nwaf008
Jingcheng Hu, Haoyu He, Minghao Xu, Xiaotian Qi, Chao Fu, Hong Yi, Aiwen Lei
{"title":"Adduct-catalyzed tandem electro-thermal synthesis of organophosphorus (III) compounds from white phosphorus.","authors":"Jingcheng Hu, Haoyu He, Minghao Xu, Xiaotian Qi, Chao Fu, Hong Yi, Aiwen Lei","doi":"10.1093/nsr/nwaf008","DOIUrl":null,"url":null,"abstract":"<p><p>Electrooxidation strategies for synthesizing readily oxidizable products face notable challenges, especially when the oxidation potential of the products is lower than that of the reactants or when high current densities are necessary. The electrooxidation synthesis of trivalent organophosphorus compounds (OPCs (III)) from white phosphorus (P<sub>4</sub>) has demonstrated potential but is hindered by selectivity issues due to over-oxidation. Herein, we report a tandem electro-thermal synthesis pathway that addresses these challenges in producing OPCs (III) from P<sub>4</sub>. The process begins with an electrooxidation step that generates a stable trivalent phosphorus transfer reagent, then thermochemically converted into various high-value OPCs (III). Utilizing hexafluoroisopropanol (HFIP) as the nucleophile and optimizing a tetrabutylammonium iodide (TBAI)-4-dimethylaminopyridine (DMAP)-adduct catalytic system, we developed an efficient electrophilic phosphorus transfer reagent via electrosynthesis. The adduct facilitates the oxidation of P<sub>4</sub> and enhances the nucleophilicity of HFIP, thereby improving the electrooxidation process. This approach supports high current density, scales up to the hundred-gram level without yield loss, and remains compatible with fluctuating green electricity.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 3","pages":"nwaf008"},"PeriodicalIF":16.3000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879454/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf008","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Electrooxidation strategies for synthesizing readily oxidizable products face notable challenges, especially when the oxidation potential of the products is lower than that of the reactants or when high current densities are necessary. The electrooxidation synthesis of trivalent organophosphorus compounds (OPCs (III)) from white phosphorus (P4) has demonstrated potential but is hindered by selectivity issues due to over-oxidation. Herein, we report a tandem electro-thermal synthesis pathway that addresses these challenges in producing OPCs (III) from P4. The process begins with an electrooxidation step that generates a stable trivalent phosphorus transfer reagent, then thermochemically converted into various high-value OPCs (III). Utilizing hexafluoroisopropanol (HFIP) as the nucleophile and optimizing a tetrabutylammonium iodide (TBAI)-4-dimethylaminopyridine (DMAP)-adduct catalytic system, we developed an efficient electrophilic phosphorus transfer reagent via electrosynthesis. The adduct facilitates the oxidation of P4 and enhances the nucleophilicity of HFIP, thereby improving the electrooxidation process. This approach supports high current density, scales up to the hundred-gram level without yield loss, and remains compatible with fluctuating green electricity.

白磷加成催化串联电热合成有机磷 (III) 化合物。
合成易氧化产物的电氧化策略面临着显著的挑战,特别是当产物的氧化电位低于反应物的氧化电位或当需要高电流密度时。从白磷(P4)中电氧化合成三价有机磷化合物(OPCs (III))已经证明了其潜力,但由于过度氧化导致的选择性问题而受到阻碍。在此,我们报告了一种串联电热合成途径,解决了从P4生产OPCs (III)的这些挑战。以六氟异丙醇(HFIP)为亲核试剂,优化四丁基碘化铵(TBAI)-4-二甲氨基吡啶(DMAP)-加合物催化体系,通过电合成制备了一种高效的亲电性磷转移试剂。加合物促进P4的氧化,增强HFIP的亲核性,从而改善电氧化过程。这种方法支持高电流密度,在不损失产量的情况下扩展到百克水平,并且与波动的绿色电力保持兼容。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信