{"title":"Microbial community transition in Surti buffalo-based fermented formulations sustainably enhances soil fertility and plant growth.","authors":"Komal Antaliya, Manoj Godhaniya, Janvi Galawala, Ashaka Vansia, Amit Mangrola, Anjana Ghelani, Rajesh Patel","doi":"10.1093/lambio/ovaf030","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the role of microbial dynamics during the fermentation of buffalo dung and urine-fermented plant growth-promoting formulation, a natural biofertilizer, and its impact on plant growth and soil health. This formulation was prepared using Surti buffalo dung, urine, jaggery, gram flour, and soil and fermented for up to 14 days. Metagenomic analysis revealed microbial succession from a diverse initial community to a Bacillus-dominated population, especially the Lactic Acid Bacteria, after 8 days of fermentation. The changes were accompanied by increases in the plant growth-promoting genes related to nutrient acquisition, phytohormone production, and stress resistance. The pot experiment revealed a significant increase in mung bean growth, with the maximum effect obtained from the eighth-day fermented formulation. The experiment showed considerable improvement in the physicochemical properties of soil, including increased organic carbon and nutrient availability. These findings underscore the ecological importance of microbial input preparation in enhancing soil fertility and plant growth sustainably. Future research should delve deeper into the specific mechanisms these microbes facilitate nutrient cycling and resilience in various agroclimatic conditions.</p>","PeriodicalId":17962,"journal":{"name":"Letters in Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/lambio/ovaf030","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the role of microbial dynamics during the fermentation of buffalo dung and urine-fermented plant growth-promoting formulation, a natural biofertilizer, and its impact on plant growth and soil health. This formulation was prepared using Surti buffalo dung, urine, jaggery, gram flour, and soil and fermented for up to 14 days. Metagenomic analysis revealed microbial succession from a diverse initial community to a Bacillus-dominated population, especially the Lactic Acid Bacteria, after 8 days of fermentation. The changes were accompanied by increases in the plant growth-promoting genes related to nutrient acquisition, phytohormone production, and stress resistance. The pot experiment revealed a significant increase in mung bean growth, with the maximum effect obtained from the eighth-day fermented formulation. The experiment showed considerable improvement in the physicochemical properties of soil, including increased organic carbon and nutrient availability. These findings underscore the ecological importance of microbial input preparation in enhancing soil fertility and plant growth sustainably. Future research should delve deeper into the specific mechanisms these microbes facilitate nutrient cycling and resilience in various agroclimatic conditions.
期刊介绍:
Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.