Repair of Isoaspartyl Residues by PCMT1 and Kidney Fibrosis.

IF 10.3 1区 医学 Q1 UROLOGY & NEPHROLOGY
Jia Xia, Yutong Hou, Jie Wang, Jiahui Zhang, Jiajia Wu, Xiang Yu, Hong Cai, Wen Yang, Yingjie Xu, Shan Mou
{"title":"Repair of Isoaspartyl Residues by PCMT1 and Kidney Fibrosis.","authors":"Jia Xia, Yutong Hou, Jie Wang, Jiahui Zhang, Jiajia Wu, Xiang Yu, Hong Cai, Wen Yang, Yingjie Xu, Shan Mou","doi":"10.1681/ASN.0000000652","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Kidney fibrosis, the excessive accumulation and dysregulated remodeling of the extracellular matrix, is the principal pathophysiological process in chronic kidney disease (CKD). Protein L-isoaspartyl/D-aspartyl methyltransferase (PCMT1) is crucial in repairing post-translational modifications of L-isoaspartyl residues, which are important for extracellular matrix proteins because of their low turnover rate and susceptibility to accelerating factors. This study aimed to reveal a novel role of PCMT1 in kidney fibrosis.</p><p><strong>Methods: </strong>Kidney tissues from mice and humans were evaluated for PCMT1 expression and its association with fibrosis and kidney function. PCMT1's effects on the TGF-β1/Smad signaling were analyzed, and its functional role was assessed in tubule-specific Pcmt1 knockout murine models of kidney fibrosis. The ability of secreted PCMT1 to repair L-isoaspartyl residues on the ectodomain of transforming growth factor beta receptor 2 (TGFBR2) was investigated through immunoprecipitation, gene lentivirus overexpression or knockout, and post-translational modification mass spectrometry.</p><p><strong>Results: </strong>PCMT1 expression was decreased in the tubules of human kidney biopsies from patients with CKD and murine fibrosis models. Renal tubule-specific PCMT1 deficiency in murine kidney fibrosis models worsened tubular injury, extracellular matrix protein deposition, myofibroblast activation, and TGF-β1/Smad signaling overactivation. Mechanistically, PCMT1 was unconventionally secreted and enzymatically inhibited TGF-β1-induced extracellular matrix protein deposition in vitro. PCMT1 interacted with TGFBR2, reversing N63 deamination on its ectodomain, which triggered TGFBR2 ubiquitination and degradation. PCMT1 supplementation in kidneys decreased TGFBR2 levels, attenuated TGF-β1/Smad overactivation, and impeded the profibrotic process.</p><p><strong>Conclusions: </strong>Our study highlights the importance of PCMT1 in maintaining extracellular matrix homeostasis and mitigating kidney fibrosis by regulating TGFBR2 deamination and its protein stability, suppressing the TGF-β1/Smad signaling.</p>","PeriodicalId":17217,"journal":{"name":"Journal of The American Society of Nephrology","volume":" ","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Society of Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1681/ASN.0000000652","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Kidney fibrosis, the excessive accumulation and dysregulated remodeling of the extracellular matrix, is the principal pathophysiological process in chronic kidney disease (CKD). Protein L-isoaspartyl/D-aspartyl methyltransferase (PCMT1) is crucial in repairing post-translational modifications of L-isoaspartyl residues, which are important for extracellular matrix proteins because of their low turnover rate and susceptibility to accelerating factors. This study aimed to reveal a novel role of PCMT1 in kidney fibrosis.

Methods: Kidney tissues from mice and humans were evaluated for PCMT1 expression and its association with fibrosis and kidney function. PCMT1's effects on the TGF-β1/Smad signaling were analyzed, and its functional role was assessed in tubule-specific Pcmt1 knockout murine models of kidney fibrosis. The ability of secreted PCMT1 to repair L-isoaspartyl residues on the ectodomain of transforming growth factor beta receptor 2 (TGFBR2) was investigated through immunoprecipitation, gene lentivirus overexpression or knockout, and post-translational modification mass spectrometry.

Results: PCMT1 expression was decreased in the tubules of human kidney biopsies from patients with CKD and murine fibrosis models. Renal tubule-specific PCMT1 deficiency in murine kidney fibrosis models worsened tubular injury, extracellular matrix protein deposition, myofibroblast activation, and TGF-β1/Smad signaling overactivation. Mechanistically, PCMT1 was unconventionally secreted and enzymatically inhibited TGF-β1-induced extracellular matrix protein deposition in vitro. PCMT1 interacted with TGFBR2, reversing N63 deamination on its ectodomain, which triggered TGFBR2 ubiquitination and degradation. PCMT1 supplementation in kidneys decreased TGFBR2 levels, attenuated TGF-β1/Smad overactivation, and impeded the profibrotic process.

Conclusions: Our study highlights the importance of PCMT1 in maintaining extracellular matrix homeostasis and mitigating kidney fibrosis by regulating TGFBR2 deamination and its protein stability, suppressing the TGF-β1/Smad signaling.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The American Society of Nephrology
Journal of The American Society of Nephrology 医学-泌尿学与肾脏学
CiteScore
22.40
自引率
2.90%
发文量
492
审稿时长
3-8 weeks
期刊介绍: The Journal of the American Society of Nephrology (JASN) stands as the preeminent kidney journal globally, offering an exceptional synthesis of cutting-edge basic research, clinical epidemiology, meta-analysis, and relevant editorial content. Representing a comprehensive resource, JASN encompasses clinical research, editorials distilling key findings, perspectives, and timely reviews. Editorials are skillfully crafted to elucidate the essential insights of the parent article, while JASN actively encourages the submission of Letters to the Editor discussing recently published articles. The reviews featured in JASN are consistently erudite and comprehensive, providing thorough coverage of respective fields. Since its inception in July 1990, JASN has been a monthly publication. JASN publishes original research reports and editorial content across a spectrum of basic and clinical science relevant to the broad discipline of nephrology. Topics covered include renal cell biology, developmental biology of the kidney, genetics of kidney disease, cell and transport physiology, hemodynamics and vascular regulation, mechanisms of blood pressure regulation, renal immunology, kidney pathology, pathophysiology of kidney diseases, nephrolithiasis, clinical nephrology (including dialysis and transplantation), and hypertension. Furthermore, articles addressing healthcare policy and care delivery issues relevant to nephrology are warmly welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信