Deaminase inhibitor and casein hydrolysates drive microbial shifts favoring Campylobacter jejuni in an in vitro poultry cecal model.

IF 3.2 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Elena G Olson, Chamia C Chatman, Dana K Dittoe, Erica L-W Majumder, Hilario C Mantovani, Steven C Ricke
{"title":"Deaminase inhibitor and casein hydrolysates drive microbial shifts favoring Campylobacter jejuni in an in vitro poultry cecal model.","authors":"Elena G Olson, Chamia C Chatman, Dana K Dittoe, Erica L-W Majumder, Hilario C Mantovani, Steven C Ricke","doi":"10.1093/jambio/lxaf046","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>The dietary proteins in poultry feeds, including the polypeptide chain size, influence gut microbial composition and function. This study assessed the microbial preference for peptide size using the same protein source in three polypeptide forms.</p><p><strong>Methods and results: </strong>We investigated the effects of diphenyliodonium chloride (DIC) on poultry cecal microbiota inoculated with Campylobacter jejuni and supplemented with various casein hydrolysates (intact casein, enzyme hydrolysate, acid hydrolysate, and a mix of all three) using an in vitro cecal model. The incubation occurred over 18 h at 42°C under microaerophilic conditions. We hypothesized a decrease in C. jejuni abundance by limiting nitrogenous metabolites while promoting the growth of protein fermentative bacteria. Additionally, we speculated that the response to DIC would vary with different polypeptides. Genomic DNA was extracted, amplified, and sequenced on an Illumina MiSeq platform. Analysis within QIIME2-2021.11 showed that DIC treatments did not significantly affect C. jejuni abundance but drastically decreased Enterobacteriaceae abundance (ANCOM, P < 0.05). DIC-treated groups exhibited a more stable community structure, especially in the peptide-amended group. Microbial interactions likely aided C. jejuni survival in DIC groups with casein hydrolysates. Methanocorpusculum, Phascolarctobacterium, and Campylobacter formed a core microbial community in both DIC-treated and non-treated groups. DIC altered co-occurrence patterns among core members and differentiated taxa in abundance in acid and peptide-DIC treated groups, changing negative relationships to positive ones (Spearman's Correlation, P < 0.05). Variations in polypeptide composition affected metabolite abundance, notably impacting the urea cycle in Campylobacter and Clostridiaceae. DIC shifted communal energy metabolism in microbiota on casein sources.</p><p><strong>Conclusion: </strong>Campylobacter's adaptability to the deaminase inhibitor indicates reliance on the microbial community and their metabolic products, showcasing its metabolic versatility.</p>","PeriodicalId":15036,"journal":{"name":"Journal of Applied Microbiology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jambio/lxaf046","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: The dietary proteins in poultry feeds, including the polypeptide chain size, influence gut microbial composition and function. This study assessed the microbial preference for peptide size using the same protein source in three polypeptide forms.

Methods and results: We investigated the effects of diphenyliodonium chloride (DIC) on poultry cecal microbiota inoculated with Campylobacter jejuni and supplemented with various casein hydrolysates (intact casein, enzyme hydrolysate, acid hydrolysate, and a mix of all three) using an in vitro cecal model. The incubation occurred over 18 h at 42°C under microaerophilic conditions. We hypothesized a decrease in C. jejuni abundance by limiting nitrogenous metabolites while promoting the growth of protein fermentative bacteria. Additionally, we speculated that the response to DIC would vary with different polypeptides. Genomic DNA was extracted, amplified, and sequenced on an Illumina MiSeq platform. Analysis within QIIME2-2021.11 showed that DIC treatments did not significantly affect C. jejuni abundance but drastically decreased Enterobacteriaceae abundance (ANCOM, P < 0.05). DIC-treated groups exhibited a more stable community structure, especially in the peptide-amended group. Microbial interactions likely aided C. jejuni survival in DIC groups with casein hydrolysates. Methanocorpusculum, Phascolarctobacterium, and Campylobacter formed a core microbial community in both DIC-treated and non-treated groups. DIC altered co-occurrence patterns among core members and differentiated taxa in abundance in acid and peptide-DIC treated groups, changing negative relationships to positive ones (Spearman's Correlation, P < 0.05). Variations in polypeptide composition affected metabolite abundance, notably impacting the urea cycle in Campylobacter and Clostridiaceae. DIC shifted communal energy metabolism in microbiota on casein sources.

Conclusion: Campylobacter's adaptability to the deaminase inhibitor indicates reliance on the microbial community and their metabolic products, showcasing its metabolic versatility.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Microbiology
Journal of Applied Microbiology 生物-生物工程与应用微生物
CiteScore
7.30
自引率
2.50%
发文量
427
审稿时长
2.7 months
期刊介绍: Journal of & Letters in Applied Microbiology are two of the flagship research journals of the Society for Applied Microbiology (SfAM). For more than 75 years they have been publishing top quality research and reviews in the broad field of applied microbiology. The journals are provided to all SfAM members as well as having a global online readership totalling more than 500,000 downloads per year in more than 200 countries. Submitting authors can expect fast decision and publication times, averaging 33 days to first decision and 34 days from acceptance to online publication. There are no page charges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信