{"title":"Restoring mitochondrial function promotes hematopoietic reconstitution from cord blood following cryopreservation-related functional decline.","authors":"Yaojin Huang, Xiaowei Xie, Mengyao Liu, Yawen Zhang, Junye Yang, Wenling Yang, Yu Hu, Saibing Qi, Yahui Feng, Guojun Liu, Shihong Lu, Xuemei Peng, Jinhui Ye, Shihui Ma, Jiali Sun, Lu Wang, Linping Hu, Lin Wang, Xiaofan Zhu, Hui Cheng, Zimin Sun, Junren Chen, Fang Dong, Yingchi Zhang, Tao Cheng","doi":"10.1172/JCI183607","DOIUrl":null,"url":null,"abstract":"<p><p>Umbilical cord blood (UCB) showcases substantial roles in hematopoietic stem cells (HSCs) transplantation and regenerative medicine. UCB is usually cryopreserved for years before use. Whether and how cryopreservation affects its function remain unclear. We constructed single-cell transcriptomic profile of CD34+ hematopoietic stem and progenitor cells (HSPCs) and mononuclear cells (MNCs) from fresh and cryopreserved UCB stored for 1-, 5-, 10-, and 19- years. Compared to fresh UCB, cryopreserved HSCs and multipotent progenitors (MPPs) exhibited more active cell cycle and lower HSC/MPP signature gene expressions. Hematopoietic reconstitution of cryopreserved HSPCs gradually decreased during the first 5 years but stabilized thereafter, aligning with the negative correlation between clinical neutrophil engraftment and cryopreservation duration of UCB. Cryopreserved HSPCs also showed reduced megakaryocyte generation. In contrast, cryopreserved natural killer (NK) cells and T cells maintained cytokine production and cytotoxic ability comparable to fresh cells. Mechanistically, cryopreserved HSPCs exhibited elevated reactive oxygen species, reduced ATP synthesis, and abnormal mitochondrial distribution, which collectively led to attenuated hematopoietic reconstitution. These effects could be ameliorated by sulforaphane. Together, we elucidated the negative impact of cryopreservation on UCB HSPCs and provided sulforaphane as a mitigation strategy, broadening the temporal window and scope for clinical applications of cryopreserved UCB. .</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":" ","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI183607","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Umbilical cord blood (UCB) showcases substantial roles in hematopoietic stem cells (HSCs) transplantation and regenerative medicine. UCB is usually cryopreserved for years before use. Whether and how cryopreservation affects its function remain unclear. We constructed single-cell transcriptomic profile of CD34+ hematopoietic stem and progenitor cells (HSPCs) and mononuclear cells (MNCs) from fresh and cryopreserved UCB stored for 1-, 5-, 10-, and 19- years. Compared to fresh UCB, cryopreserved HSCs and multipotent progenitors (MPPs) exhibited more active cell cycle and lower HSC/MPP signature gene expressions. Hematopoietic reconstitution of cryopreserved HSPCs gradually decreased during the first 5 years but stabilized thereafter, aligning with the negative correlation between clinical neutrophil engraftment and cryopreservation duration of UCB. Cryopreserved HSPCs also showed reduced megakaryocyte generation. In contrast, cryopreserved natural killer (NK) cells and T cells maintained cytokine production and cytotoxic ability comparable to fresh cells. Mechanistically, cryopreserved HSPCs exhibited elevated reactive oxygen species, reduced ATP synthesis, and abnormal mitochondrial distribution, which collectively led to attenuated hematopoietic reconstitution. These effects could be ameliorated by sulforaphane. Together, we elucidated the negative impact of cryopreservation on UCB HSPCs and provided sulforaphane as a mitigation strategy, broadening the temporal window and scope for clinical applications of cryopreserved UCB. .
期刊介绍:
The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science.
The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others.
The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.