Kunjie Xie, Suping Zhu, Jincong Lin, Yi Li, Jinghui Huang, Wei Lei, Yabo Yan
{"title":"A deep learning model for radiological measurement of adolescent idiopathic scoliosis using biplanar radiographs.","authors":"Kunjie Xie, Suping Zhu, Jincong Lin, Yi Li, Jinghui Huang, Wei Lei, Yabo Yan","doi":"10.1186/s13018-025-05620-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Accurate measurement of the spinal alignment parameters is crucial for diagnosing and evaluating adolescent idiopathic scoliosis (AIS). Manual measurement is subjective and time-consuming. The recently developed artificial intelligence models mainly focused on measuring the coronal Cobb angle (CA) and ignored the evaluation of the sagittal plane. We developed a deep-learning model that could automatically measure spinal alignment parameters in biplanar radiographs.</p><p><strong>Methods: </strong>In this study, our model adopted ResNet34 as the backbone network, mainly consisting of keypoint detection and CA measurement. A total of 600 biplane radiographs were collected from our hospital and randomly divided into train and test sets in a 3:1 ratio. Two senior spinal surgeons independently manually measured and analyzed spinal alignment and recorded the time taken. The reliabilities of automatic measurement were evaluated by comparing them with the gold standard, using mean absolute difference (MAD), intraclass correlation coefficient (ICC), simple linear regression, and Bland-Altman plots. The diagnosis performance of the model was evaluated through the receiver operating characteristic (ROC) curve and area under the curve (AUC). Severity classification and sagittal abnormalities classification were visualized using a confusion matrix.</p><p><strong>Results: </strong>Our AI model achieved the MAD of coronal and sagittal angle errors was 2.15° and 2.72°, and ICC was 0.985, 0.927. The simple linear regression showed a strong correction between all parameters and the gold standard (p < 0.001, r<sup>2</sup> ≥ 0.686), the Bland-Altman plots showed that the mean difference of the model was within 2° and the automatic measurement time was 9.1 s. Our model demonstrated excellent diagnostic performance, with an accuracy of 97.2%, a sensitivity of 96.8%, a specificity of 97.6%, and an AUC of 0.972 (0.940-1.000).For severity classification, the overall accuracy was 94.5%. All accuracy of sagittal abnormalities classification was greater than 91.8%.</p><p><strong>Conclusions: </strong>This deep learning model can accurately and automatically measure spinal alignment parameters with reliable results, significantly reducing diagnostic time, and might provide the potential to assist clinicians.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"236"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881421/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05620-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Accurate measurement of the spinal alignment parameters is crucial for diagnosing and evaluating adolescent idiopathic scoliosis (AIS). Manual measurement is subjective and time-consuming. The recently developed artificial intelligence models mainly focused on measuring the coronal Cobb angle (CA) and ignored the evaluation of the sagittal plane. We developed a deep-learning model that could automatically measure spinal alignment parameters in biplanar radiographs.
Methods: In this study, our model adopted ResNet34 as the backbone network, mainly consisting of keypoint detection and CA measurement. A total of 600 biplane radiographs were collected from our hospital and randomly divided into train and test sets in a 3:1 ratio. Two senior spinal surgeons independently manually measured and analyzed spinal alignment and recorded the time taken. The reliabilities of automatic measurement were evaluated by comparing them with the gold standard, using mean absolute difference (MAD), intraclass correlation coefficient (ICC), simple linear regression, and Bland-Altman plots. The diagnosis performance of the model was evaluated through the receiver operating characteristic (ROC) curve and area under the curve (AUC). Severity classification and sagittal abnormalities classification were visualized using a confusion matrix.
Results: Our AI model achieved the MAD of coronal and sagittal angle errors was 2.15° and 2.72°, and ICC was 0.985, 0.927. The simple linear regression showed a strong correction between all parameters and the gold standard (p < 0.001, r2 ≥ 0.686), the Bland-Altman plots showed that the mean difference of the model was within 2° and the automatic measurement time was 9.1 s. Our model demonstrated excellent diagnostic performance, with an accuracy of 97.2%, a sensitivity of 96.8%, a specificity of 97.6%, and an AUC of 0.972 (0.940-1.000).For severity classification, the overall accuracy was 94.5%. All accuracy of sagittal abnormalities classification was greater than 91.8%.
Conclusions: This deep learning model can accurately and automatically measure spinal alignment parameters with reliable results, significantly reducing diagnostic time, and might provide the potential to assist clinicians.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.