Tissue-specified reconstruction modeling of the head and neck structure and its application in simulating airway obstruction.

IF 3.4 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Heliyon Pub Date : 2025-02-10 eCollection Date: 2025-02-28 DOI:10.1016/j.heliyon.2025.e42598
Huahui Xiong, Hui Tong, Yuhang Tian, Changjin Ji, Xiaoqing Huang, Yaqi Huang
{"title":"Tissue-specified reconstruction modeling of the head and neck structure and its application in simulating airway obstruction.","authors":"Huahui Xiong, Hui Tong, Yuhang Tian, Changjin Ji, Xiaoqing Huang, Yaqi Huang","doi":"10.1016/j.heliyon.2025.e42598","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objective: </strong>Three-dimensional (3D) reconstruction of head and neck tissues has extensive clinical applications, but due to the complexity and variability of tissue structure, there is still a lack of a complete scheme to reconstruct the head and neck tissues. This study aims to establish a tissue-specified multi-directional cross-sectional image sequence construction method to capture diverse tissue contour information.</p><p><strong>Methods: </strong>The image sequences that are most conducive to acquiring the boundary contours of the target tissue are constructed from 3D MRI images of the head and neck in a non-traditional way based on the characteristics of each target tissue, and an effective registration strategy is used to integrate the boundaries of the target tissue segmented from multiple image sequences. The NURBS (Non-Uniform Rational B-Splines) surface modeling method is used to construct the 3D structure of the head and neck based on the segmented tissue boundaries, and then the constructed structure is used to build a fluid-structure interaction model to simulate airway collapse.</p><p><strong>Results: </strong>The multi-directional cross-sectional image sequences of head and neck tissues were reconstructed, which successfully supplemented the missing boundary information in unidirectional image sequences commonly used in anatomical reconstructions. The boundaries of the tongue and soft palate were obtained from three corresponding sequential images respectively, and nonlinear registration methods were developed to match the intersections of the target tissue boundaries segmented from different image sequences. The complete 3D head and neck structure, including the surrounding tissues of the upper airway, was accurately reconstructed, and then directly converted into a finite element model through a meshing procedure. The head and neck numerical models successfully simulate airway collapse in both the obstructive sleep apnea patient and the normal subject, providing detailed information on soft tissue deformation and predicting the values of the airway critical closing pressure.</p><p><strong>Conclusions: </strong>A complete 3D reconstruction scheme from multi-directional image sequence construction to nonlinear boundary registration and NURBS surface generation is established. The constructed model can accurately reflect the characteristics of real anatomical structure, and can be directly used for complex numerical simulations of upper airway collapse.</p>","PeriodicalId":12894,"journal":{"name":"Heliyon","volume":"11 4","pages":"e42598"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876879/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heliyon","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.heliyon.2025.e42598","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/28 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background and objective: Three-dimensional (3D) reconstruction of head and neck tissues has extensive clinical applications, but due to the complexity and variability of tissue structure, there is still a lack of a complete scheme to reconstruct the head and neck tissues. This study aims to establish a tissue-specified multi-directional cross-sectional image sequence construction method to capture diverse tissue contour information.

Methods: The image sequences that are most conducive to acquiring the boundary contours of the target tissue are constructed from 3D MRI images of the head and neck in a non-traditional way based on the characteristics of each target tissue, and an effective registration strategy is used to integrate the boundaries of the target tissue segmented from multiple image sequences. The NURBS (Non-Uniform Rational B-Splines) surface modeling method is used to construct the 3D structure of the head and neck based on the segmented tissue boundaries, and then the constructed structure is used to build a fluid-structure interaction model to simulate airway collapse.

Results: The multi-directional cross-sectional image sequences of head and neck tissues were reconstructed, which successfully supplemented the missing boundary information in unidirectional image sequences commonly used in anatomical reconstructions. The boundaries of the tongue and soft palate were obtained from three corresponding sequential images respectively, and nonlinear registration methods were developed to match the intersections of the target tissue boundaries segmented from different image sequences. The complete 3D head and neck structure, including the surrounding tissues of the upper airway, was accurately reconstructed, and then directly converted into a finite element model through a meshing procedure. The head and neck numerical models successfully simulate airway collapse in both the obstructive sleep apnea patient and the normal subject, providing detailed information on soft tissue deformation and predicting the values of the airway critical closing pressure.

Conclusions: A complete 3D reconstruction scheme from multi-directional image sequence construction to nonlinear boundary registration and NURBS surface generation is established. The constructed model can accurately reflect the characteristics of real anatomical structure, and can be directly used for complex numerical simulations of upper airway collapse.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Heliyon
Heliyon MULTIDISCIPLINARY SCIENCES-
CiteScore
4.50
自引率
2.50%
发文量
2793
期刊介绍: Heliyon is an all-science, open access journal that is part of the Cell Press family. Any paper reporting scientifically accurate and valuable research, which adheres to accepted ethical and scientific publishing standards, will be considered for publication. Our growing team of dedicated section editors, along with our in-house team, handle your paper and manage the publication process end-to-end, giving your research the editorial support it deserves.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信