A model for predicting bacteremia species based on host immune response.

IF 4.6 2区 医学 Q2 IMMUNOLOGY
Frontiers in Cellular and Infection Microbiology Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI:10.3389/fcimb.2025.1451293
Peter Simons, Virginie Bondu, Laura Shevy, Stephen Young, Angela Wandinger-Ness, Cristian G Bologa, Tione Buranda
{"title":"A model for predicting bacteremia species based on host immune response.","authors":"Peter Simons, Virginie Bondu, Laura Shevy, Stephen Young, Angela Wandinger-Ness, Cristian G Bologa, Tione Buranda","doi":"10.3389/fcimb.2025.1451293","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Clinicians encounter significant challenges in quickly and accurately identifying the bacterial species responsible for patient bacteremia and in selecting appropriate antibiotics for timely treatment. This study introduces a novel approach that combines immune response data from routine blood counts with assessments of immune cell activation, specifically through quantitative measurements of Rho family GTPase activity. The combined data were used to develop a machine-learning model capable of distinguishing specific classes of bacteria and their associations.</p><p><strong>Methods: </strong>We aimed to determine whether different classes of bacteria elicit distinct patterns of host immune responses, as indicated by quantitative differences in leukocyte populations from routine complete blood counts with differential. Concurrently, we conducted quantitative measurements of activated Rac1 (Rac1•GTP) levels using a novel 'G-Trap assay' we developed. With the G-Trap, we measured Rac1•GTP in peripheral blood monocytes (PBMC) and polymorphonuclear (PMN) cells from blood samples collected from 28 culture-positive patients and over 80 non-infected patients used as controls.</p><p><strong>Results: </strong>Our findings indicated that 18 of the 28 patients with bacteremia showed an increase of ≥ 3-fold in Rac1•GTP levels compared to the controls. The remaining ten patients with bacteremia exhibited either neutrophilia or pancytopenia and displayed normal to below-normal Rac1 GTPase activity, which is consistent with bacteria-induced immunosuppression. To analyze the data, we employed partial least squares discriminant analysis (PLS-DA), a supervised method that optimizes group separation and aids in building a novel machine-learning model for pathogen identification.</p><p><strong>Discussion: </strong>The results demonstrated that PLS-DA effectively differentiates between specific pathogen groups, and external validation confirmed the predictive model's utility. Given that bacterial culture confirmation may take several days, our study underscores the potential of combining routine assays with a machine-learning model as a valuable clinical decision-support tool. This approach could enable prompt and accurate treatment on the same day that patients present to the clinic.</p>","PeriodicalId":12458,"journal":{"name":"Frontiers in Cellular and Infection Microbiology","volume":"15 ","pages":"1451293"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11876111/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Cellular and Infection Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fcimb.2025.1451293","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Clinicians encounter significant challenges in quickly and accurately identifying the bacterial species responsible for patient bacteremia and in selecting appropriate antibiotics for timely treatment. This study introduces a novel approach that combines immune response data from routine blood counts with assessments of immune cell activation, specifically through quantitative measurements of Rho family GTPase activity. The combined data were used to develop a machine-learning model capable of distinguishing specific classes of bacteria and their associations.

Methods: We aimed to determine whether different classes of bacteria elicit distinct patterns of host immune responses, as indicated by quantitative differences in leukocyte populations from routine complete blood counts with differential. Concurrently, we conducted quantitative measurements of activated Rac1 (Rac1•GTP) levels using a novel 'G-Trap assay' we developed. With the G-Trap, we measured Rac1•GTP in peripheral blood monocytes (PBMC) and polymorphonuclear (PMN) cells from blood samples collected from 28 culture-positive patients and over 80 non-infected patients used as controls.

Results: Our findings indicated that 18 of the 28 patients with bacteremia showed an increase of ≥ 3-fold in Rac1•GTP levels compared to the controls. The remaining ten patients with bacteremia exhibited either neutrophilia or pancytopenia and displayed normal to below-normal Rac1 GTPase activity, which is consistent with bacteria-induced immunosuppression. To analyze the data, we employed partial least squares discriminant analysis (PLS-DA), a supervised method that optimizes group separation and aids in building a novel machine-learning model for pathogen identification.

Discussion: The results demonstrated that PLS-DA effectively differentiates between specific pathogen groups, and external validation confirmed the predictive model's utility. Given that bacterial culture confirmation may take several days, our study underscores the potential of combining routine assays with a machine-learning model as a valuable clinical decision-support tool. This approach could enable prompt and accurate treatment on the same day that patients present to the clinic.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
7.00%
发文量
1817
审稿时长
14 weeks
期刊介绍: Frontiers in Cellular and Infection Microbiology is a leading specialty journal, publishing rigorously peer-reviewed research across all pathogenic microorganisms and their interaction with their hosts. Chief Editor Yousef Abu Kwaik, University of Louisville is supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics, clinicians and the public worldwide. Frontiers in Cellular and Infection Microbiology includes research on bacteria, fungi, parasites, viruses, endosymbionts, prions and all microbial pathogens as well as the microbiota and its effect on health and disease in various hosts. The research approaches include molecular microbiology, cellular microbiology, gene regulation, proteomics, signal transduction, pathogenic evolution, genomics, structural biology, and virulence factors as well as model hosts. Areas of research to counteract infectious agents by the host include the host innate and adaptive immune responses as well as metabolic restrictions to various pathogenic microorganisms, vaccine design and development against various pathogenic microorganisms, and the mechanisms of antibiotic resistance and its countermeasures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信