Cenozoic evolutionary history obscures the Mesozoic origins of acanthopterygian fishes.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-03-04 DOI:10.1093/evolut/qpaf040
Chase D Brownstein, Alex Dornburg, Thomas J Near
{"title":"Cenozoic evolutionary history obscures the Mesozoic origins of acanthopterygian fishes.","authors":"Chase D Brownstein, Alex Dornburg, Thomas J Near","doi":"10.1093/evolut/qpaf040","DOIUrl":null,"url":null,"abstract":"<p><p>Sister lineage comparisons provide a valuable tool for understanding evolutionary origins of species-rich clades and the role of habitat transitions in lineage diversification. Percomorpha, comprising over 18,900 species, represents one of the most species-rich lineage of vertebrates. However, the phylogenetic resolution of its sister lineage remains unclear, obscuring whether contrasts in histories of diversification provide insights into the factors that gave rise to this clade's high diversity. Using 887 ultraconserved element loci and eight Sanger-sequenced nuclear genes, we resolve the phylogenetic relationships of the three closest relatives of Percomorpha-the roughies, flashlightfishes, porcupinefishes and fangtooths (Trachichthyiformes), the squirrelfishes and soldierfishes (Holocentridae), and the whalefishes, bigscales, and alfonsinos (Berycoidei)-and the placement of percomorphs among them. Contrary to expectations from the fossil record, we demonstrate that living lineages of Berycoidei, Holocentridae, and Trachichthyiformes all diversified after the Cretaceous-Paleogene mass extinction. Our findings show that multiple clades in Trachichthyiformes and Berycoidei independently colonized deep ocean habitats during the climatically unstable Eocene and Oligocene and shallow-water reefs during the extensive hotspot migration and faunal turnover of the Early Miocene. This coincided with the evolution of novel life history traits, including pelagic cnidarian-mimicking larvae and extreme sexual dimorphism in some deep-sea forms. Because of their recent invasions of these habitats, the closest relatives of Percomorpha are not ideal for understanding the origins of this exceptionally species-rich clade in the marine realm.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf040","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sister lineage comparisons provide a valuable tool for understanding evolutionary origins of species-rich clades and the role of habitat transitions in lineage diversification. Percomorpha, comprising over 18,900 species, represents one of the most species-rich lineage of vertebrates. However, the phylogenetic resolution of its sister lineage remains unclear, obscuring whether contrasts in histories of diversification provide insights into the factors that gave rise to this clade's high diversity. Using 887 ultraconserved element loci and eight Sanger-sequenced nuclear genes, we resolve the phylogenetic relationships of the three closest relatives of Percomorpha-the roughies, flashlightfishes, porcupinefishes and fangtooths (Trachichthyiformes), the squirrelfishes and soldierfishes (Holocentridae), and the whalefishes, bigscales, and alfonsinos (Berycoidei)-and the placement of percomorphs among them. Contrary to expectations from the fossil record, we demonstrate that living lineages of Berycoidei, Holocentridae, and Trachichthyiformes all diversified after the Cretaceous-Paleogene mass extinction. Our findings show that multiple clades in Trachichthyiformes and Berycoidei independently colonized deep ocean habitats during the climatically unstable Eocene and Oligocene and shallow-water reefs during the extensive hotspot migration and faunal turnover of the Early Miocene. This coincided with the evolution of novel life history traits, including pelagic cnidarian-mimicking larvae and extreme sexual dimorphism in some deep-sea forms. Because of their recent invasions of these habitats, the closest relatives of Percomorpha are not ideal for understanding the origins of this exceptionally species-rich clade in the marine realm.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信