Improved pharmacokinetic parameters and reduced tissue distribution of prodrug of Triamcinolone acetonide in lipid nanospheres- A preliminary investigation.

IF 2.4 4区 医学 Q3 CHEMISTRY, MEDICINAL
Siddharth Maity, Amisha Vora, Ashish M Kanhed, Ambikanandan Misra, Sarika Wairkar
{"title":"Improved pharmacokinetic parameters and reduced tissue distribution of prodrug of Triamcinolone acetonide in lipid nanospheres- A preliminary investigation.","authors":"Siddharth Maity, Amisha Vora, Ashish M Kanhed, Ambikanandan Misra, Sarika Wairkar","doi":"10.1080/03639045.2025.2475333","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>In the current research work, we synthesized Triamcinolone acetonide palmitate (TAP), a lipophilic prodrug of TA and formulated it into lipid nanospheres (TAP-LN) to improve pharmacokinetics and tissue distribution on intravenous administration.</p><p><strong>Significance: </strong>Triamcinolone acetonide (TA) is a parenteral glucocorticoid used to treat several inflammatory disorders. It has a short plasma half-life (2-3 h) and its parenteral administration causes severe side effects.</p><p><strong>Methods: </strong>Tap-LNs were composed of soy lecithin, soybean oil, Miglyol 812N as a lipid phase and poloxamer 188 and glycerol in distilled water as an aqueous phase. The coarse emulsion was subjected to probe sonication followed by a microfluidizer by applying 20,000 psi pressure with 10 cycles. Similarly, TAP-lipid microspheres (TAP-LM) were prepared for comparative study without microfluidization.</p><p><strong>Results: </strong>The optimized TAP-LN exhibited a size of 106.8nm, zeta potential of -45.7mV, and entrapment efficiency of 82.35%. A pharmacokinetic study showed that in rats, TAP-LN exhibited a 4.5-fold plasma concentration and 10-fold AUC0-t than TAP-lipid microspheres (TAP-LM). The slow clearance of TAP-LN could be associated with lower uptake by eliminating organs that eventually increased the residence time. In the spleen, TAP-LM concentrations were higher than TAP-LN; TAP-LN could not be detected in the liver, unlike TAP-LM, attributing to the carboxylesterase lipase, the metabolizing enzyme responsible for the conversion of TAP to TA. <b>Conclusions:</b> Thus, TAP nanospheres showed improved pharmacokinetic parameters and reduced tissue distribution, which would benefit the intravenous treatment of this glucocorticoid.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-13"},"PeriodicalIF":2.4000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2025.2475333","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: In the current research work, we synthesized Triamcinolone acetonide palmitate (TAP), a lipophilic prodrug of TA and formulated it into lipid nanospheres (TAP-LN) to improve pharmacokinetics and tissue distribution on intravenous administration.

Significance: Triamcinolone acetonide (TA) is a parenteral glucocorticoid used to treat several inflammatory disorders. It has a short plasma half-life (2-3 h) and its parenteral administration causes severe side effects.

Methods: Tap-LNs were composed of soy lecithin, soybean oil, Miglyol 812N as a lipid phase and poloxamer 188 and glycerol in distilled water as an aqueous phase. The coarse emulsion was subjected to probe sonication followed by a microfluidizer by applying 20,000 psi pressure with 10 cycles. Similarly, TAP-lipid microspheres (TAP-LM) were prepared for comparative study without microfluidization.

Results: The optimized TAP-LN exhibited a size of 106.8nm, zeta potential of -45.7mV, and entrapment efficiency of 82.35%. A pharmacokinetic study showed that in rats, TAP-LN exhibited a 4.5-fold plasma concentration and 10-fold AUC0-t than TAP-lipid microspheres (TAP-LM). The slow clearance of TAP-LN could be associated with lower uptake by eliminating organs that eventually increased the residence time. In the spleen, TAP-LM concentrations were higher than TAP-LN; TAP-LN could not be detected in the liver, unlike TAP-LM, attributing to the carboxylesterase lipase, the metabolizing enzyme responsible for the conversion of TAP to TA. Conclusions: Thus, TAP nanospheres showed improved pharmacokinetic parameters and reduced tissue distribution, which would benefit the intravenous treatment of this glucocorticoid.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.80
自引率
0.00%
发文量
82
审稿时长
4.5 months
期刊介绍: The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信