Micropore visualization and lifetime following microneedle application to skin of differing pigments.

IF 5.5 3区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Drug Delivery and Translational Research Pub Date : 2025-10-01 Epub Date: 2025-03-05 DOI:10.1007/s13346-025-01817-9
Valeria Cota, Nicole K Brogden
{"title":"Micropore visualization and lifetime following microneedle application to skin of differing pigments.","authors":"Valeria Cota, Nicole K Brogden","doi":"10.1007/s13346-025-01817-9","DOIUrl":null,"url":null,"abstract":"<p><p>Solid microneedles allow dermal delivery of drugs that cannot otherwise absorb through skin, via creation of epidermal micropores. The time that the micropores remain open (micropore lifetime) directly impacts drug delivery windows, and darker skin types have extended micropore lifetimes. Here we visualized dermal micropores and measured micropore lifetime in subjects with differing skin pigmentation (ClinicalTrials.gov identifier NCT04867733, registered 29th April 2021). Forty-nine subjects completed the study, self-identifying as Asian, Black, Caucasian, Latinx, and Bi-/multi-racial. Using a colorimeter, skin color was objectively measured and subjects were grouped according to dark (n = 13), medium (n = 19), or light (n = 17) skin. Stainless steel microneedles, 800 μm length, were applied to the arm. Impedance measurements confirmed a breach of skin barrier, suggesting adequate micropore formation. Micropore depth immediately post-microneedle application ranged from 70.3 to 106.6 μm across all subjects (n = 98 total measurements), but was not different between skin color groups, P > 0.05. OCT images were used to calculate micropore closure over 48 h. At 24 h there was no difference in % change in micropore depth between groups. By 48 h there was an 18.1% difference in micropore closure between the lightest and darkest skinned groups, P < 0.05. These data were in agreement with impedance-predicted micropore lifetimes. The longer micropore lifetime in darker skin was independent of micropore depth, and future mechanistic studies of physiological processes underlying these observations would contribute to an understudied area in skin of color research. Proof of concept pharmacokinetics studies would also be useful to investigate the full impact of these differences.</p>","PeriodicalId":11357,"journal":{"name":"Drug Delivery and Translational Research","volume":" ","pages":"3528-3541"},"PeriodicalIF":5.5000,"publicationDate":"2025-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12353774/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery and Translational Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13346-025-01817-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Solid microneedles allow dermal delivery of drugs that cannot otherwise absorb through skin, via creation of epidermal micropores. The time that the micropores remain open (micropore lifetime) directly impacts drug delivery windows, and darker skin types have extended micropore lifetimes. Here we visualized dermal micropores and measured micropore lifetime in subjects with differing skin pigmentation (ClinicalTrials.gov identifier NCT04867733, registered 29th April 2021). Forty-nine subjects completed the study, self-identifying as Asian, Black, Caucasian, Latinx, and Bi-/multi-racial. Using a colorimeter, skin color was objectively measured and subjects were grouped according to dark (n = 13), medium (n = 19), or light (n = 17) skin. Stainless steel microneedles, 800 μm length, were applied to the arm. Impedance measurements confirmed a breach of skin barrier, suggesting adequate micropore formation. Micropore depth immediately post-microneedle application ranged from 70.3 to 106.6 μm across all subjects (n = 98 total measurements), but was not different between skin color groups, P > 0.05. OCT images were used to calculate micropore closure over 48 h. At 24 h there was no difference in % change in micropore depth between groups. By 48 h there was an 18.1% difference in micropore closure between the lightest and darkest skinned groups, P < 0.05. These data were in agreement with impedance-predicted micropore lifetimes. The longer micropore lifetime in darker skin was independent of micropore depth, and future mechanistic studies of physiological processes underlying these observations would contribute to an understudied area in skin of color research. Proof of concept pharmacokinetics studies would also be useful to investigate the full impact of these differences.

微针应用于不同色素皮肤后的微孔可视化和寿命。
固体微针可以通过表皮微孔的形成,将不能通过皮肤吸收的药物输送到真皮。微孔保持开放的时间(微孔寿命)直接影响药物传递窗口,而肤色较深的皮肤类型具有延长的微孔寿命。在这里,我们观察了不同皮肤色素沉着的受试者的皮肤微孔,并测量了微孔寿命(ClinicalTrials.gov识别号NCT04867733,注册于2021年4月29日)。49名受试者完成了这项研究,他们自我认同为亚洲人、黑人、高加索人、拉丁人以及双/多种族。使用色度计客观测量皮肤颜色,并将受试者按深肤色(n = 13)、中肤色(n = 19)或浅肤色(n = 17)分组。手臂上安装了长度为800 μm的不锈钢微针。阻抗测量证实了皮肤屏障的破坏,表明有足够的微孔形成。微针应用后,所有受试者的微孔深度在70.3 ~ 106.6 μm之间(n = 98个总测量值),但不同肤色组之间没有差异,P < 0.05。使用OCT图像计算48小时内的微孔闭合。24小时时,两组微孔深度变化百分比无差异。到48 h时,最浅皮肤组和最深皮肤组的微孔关闭率相差18.1%
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery and Translational Research
Drug Delivery and Translational Research MEDICINE, RESEARCH & EXPERIMENTALPHARMACOL-PHARMACOLOGY & PHARMACY
CiteScore
11.70
自引率
1.90%
发文量
160
期刊介绍: The journal provides a unique forum for scientific publication of high-quality research that is exclusively focused on translational aspects of drug delivery. Rationally developed, effective delivery systems can potentially affect clinical outcome in different disease conditions. Research focused on the following areas of translational drug delivery research will be considered for publication in the journal. Designing and developing novel drug delivery systems, with a focus on their application to disease conditions; Preclinical and clinical data related to drug delivery systems; Drug distribution, pharmacokinetics, clearance, with drug delivery systems as compared to traditional dosing to demonstrate beneficial outcomes Short-term and long-term biocompatibility of drug delivery systems, host response; Biomaterials with growth factors for stem-cell differentiation in regenerative medicine and tissue engineering; Image-guided drug therapy, Nanomedicine; Devices for drug delivery and drug/device combination products. In addition to original full-length papers, communications, and reviews, the journal includes editorials, reports of future meetings, research highlights, and announcements pertaining to the activities of the Controlled Release Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信