Embryonic exposure to valproic acid and neonicotinoid deteriorates the hyperpolarizing GABA shift and impairs long-term potentiation of excitatory transmission in the local circuit of intermediate medial mesopallium of chick telencephalon.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Toshiya Matsushima, Noriyuki Toji, Kazuhiro Wada, Hiroki Shikanai, Takeshi Izumi
{"title":"Embryonic exposure to valproic acid and neonicotinoid deteriorates the hyperpolarizing GABA shift and impairs long-term potentiation of excitatory transmission in the local circuit of intermediate medial mesopallium of chick telencephalon.","authors":"Toshiya Matsushima, Noriyuki Toji, Kazuhiro Wada, Hiroki Shikanai, Takeshi Izumi","doi":"10.1093/cercor/bhaf044","DOIUrl":null,"url":null,"abstract":"<p><p>Embryonic exposure to valproic acid and imidacloprid (a neonicotinoid insecticide) impairs filial imprinting in hatchlings, and the deteriorating effects of valproic acid are mitigated by post-hatch injection of bumetanide, a blocker of the chloride intruder Na-K-2Cl cotransporter 1. Here, we report that these exposures depolarized the reversal potential of local GABAergic transmission in the neurons of the intermediate medial mesopallium, the pallial region critical for imprinting. Furthermore, exposure increased field excitatory post-synaptic potentials in pre-tetanus recordings and impaired long-term potentiation (LTP) by low-frequency tetanic stimulation. Bath-applied bumetanide rescued the impaired LTP in the valproic acid slices, whereas VU0463271, a blocker of the chloride extruder KCC2, suppressed LTP in the control slices, suggesting that hyperpolarizing GABA action is necessary for the potentiation of excitatory synaptic transmission. Whereas a steep increase in the gene expression of KCC2 appeared compared to NKCC1 during the peri-hatch development, significant differences were not found between valproic acid and control post-hatch chicks in these genes. Instead, both valproic acid and imidacloprid downregulated several transcriptional regulators (FOS, NR4A1, and NR4A2) and upregulated the RNA component of signal recognition particles (RN7SL1). Despite different chemical actions, valproic acid and imidacloprid could cause common neuronal effects that lead to impaired imprinting.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf044","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Embryonic exposure to valproic acid and imidacloprid (a neonicotinoid insecticide) impairs filial imprinting in hatchlings, and the deteriorating effects of valproic acid are mitigated by post-hatch injection of bumetanide, a blocker of the chloride intruder Na-K-2Cl cotransporter 1. Here, we report that these exposures depolarized the reversal potential of local GABAergic transmission in the neurons of the intermediate medial mesopallium, the pallial region critical for imprinting. Furthermore, exposure increased field excitatory post-synaptic potentials in pre-tetanus recordings and impaired long-term potentiation (LTP) by low-frequency tetanic stimulation. Bath-applied bumetanide rescued the impaired LTP in the valproic acid slices, whereas VU0463271, a blocker of the chloride extruder KCC2, suppressed LTP in the control slices, suggesting that hyperpolarizing GABA action is necessary for the potentiation of excitatory synaptic transmission. Whereas a steep increase in the gene expression of KCC2 appeared compared to NKCC1 during the peri-hatch development, significant differences were not found between valproic acid and control post-hatch chicks in these genes. Instead, both valproic acid and imidacloprid downregulated several transcriptional regulators (FOS, NR4A1, and NR4A2) and upregulated the RNA component of signal recognition particles (RN7SL1). Despite different chemical actions, valproic acid and imidacloprid could cause common neuronal effects that lead to impaired imprinting.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信