Altered spatiotemporal consistency and their genetic mechanisms in mild cognitive impairment: a combined neuroimaging and transcriptome study.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Yao Zhu, Anmo Wang, Yuyu Zhou, Shuya Yuan, Yang Ji, Wei Hu
{"title":"Altered spatiotemporal consistency and their genetic mechanisms in mild cognitive impairment: a combined neuroimaging and transcriptome study.","authors":"Yao Zhu, Anmo Wang, Yuyu Zhou, Shuya Yuan, Yang Ji, Wei Hu","doi":"10.1093/cercor/bhaf045","DOIUrl":null,"url":null,"abstract":"<p><p>The Four-dimensional (spatiotemporal) Consistency of local Neural Activities (FOCA) metric was utilized to assess spontaneous whole-brain activity. Despite its application, the genetic underpinnings of FOCA alterations in Alzheimer's Disease (AD)-related Mild Cognitive Impairment (MCI) remain largely unexplored. To elucidate these changes, we analyzed group FOCA differences in 41 MCI patients and 46 controls from the Alzheimer's Disease Neuroimaging Initiative database. Integrating the Allen Human Brain Atlas, we performed transcriptome-neuroimaging spatial association analyses to pinpoint genes correlating with MCI-related FOCA changes. We observed heightened FOCA in the frontal-parietal system and diminished FOCA in the temporal lobe and medium cingulate gyrus among MCI patients. These FOCA alterations were spatially linked to the expression of 384 genes, which were enriched in crucial molecular functions, biological processes, and cellular components of the cerebral cortex, as well as related pathways. These genes were specifically expressed in brain tissue and corticothalamic neurons, particularly during late cortical development. They also connected to various behavioral domains. Furthermore, these genes could form a protein-protein interaction network, supported by 34 hub genes. Our results suggest that local spatiotemporal consistency of spontaneous brain activity in MCI may stem from the complex interplay of a broad spectrum of genes with diverse functional features.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879177/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf045","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The Four-dimensional (spatiotemporal) Consistency of local Neural Activities (FOCA) metric was utilized to assess spontaneous whole-brain activity. Despite its application, the genetic underpinnings of FOCA alterations in Alzheimer's Disease (AD)-related Mild Cognitive Impairment (MCI) remain largely unexplored. To elucidate these changes, we analyzed group FOCA differences in 41 MCI patients and 46 controls from the Alzheimer's Disease Neuroimaging Initiative database. Integrating the Allen Human Brain Atlas, we performed transcriptome-neuroimaging spatial association analyses to pinpoint genes correlating with MCI-related FOCA changes. We observed heightened FOCA in the frontal-parietal system and diminished FOCA in the temporal lobe and medium cingulate gyrus among MCI patients. These FOCA alterations were spatially linked to the expression of 384 genes, which were enriched in crucial molecular functions, biological processes, and cellular components of the cerebral cortex, as well as related pathways. These genes were specifically expressed in brain tissue and corticothalamic neurons, particularly during late cortical development. They also connected to various behavioral domains. Furthermore, these genes could form a protein-protein interaction network, supported by 34 hub genes. Our results suggest that local spatiotemporal consistency of spontaneous brain activity in MCI may stem from the complex interplay of a broad spectrum of genes with diverse functional features.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信