Razan Alkhanbouli, Hour Matar Abdulla Almadhaani, Farah Alhosani, Mecit Can Emre Simsekler
{"title":"The role of explainable artificial intelligence in disease prediction: a systematic literature review and future research directions.","authors":"Razan Alkhanbouli, Hour Matar Abdulla Almadhaani, Farah Alhosani, Mecit Can Emre Simsekler","doi":"10.1186/s12911-025-02944-6","DOIUrl":null,"url":null,"abstract":"<p><p>Explainable Artificial Intelligence (XAI) enhances transparency and interpretability in AI models, which is crucial for trust and accountability in healthcare. A potential application of XAI is disease prediction using various data modalities. This study conducts a Systematic Literature Review (SLR) following the PRISMA protocol, synthesizing findings from 30 selected studies to examine XAI's evolving role in disease prediction. It explores commonly used XAI methods, such as Shapley Additive Explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), and their impact across medical fields in disease prediction. The review highlights key gaps, including limited dataset diversity, model complexity, and reliance on single data types, emphasizing the need for greater interpretability and data integration. Addressing these issues is crucial for advancing AI in healthcare. This study contributes by outlining current challenges and potential solutions, suggesting directions for future research to develop more reliable and robust XAI methods.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"110"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11877768/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02944-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Explainable Artificial Intelligence (XAI) enhances transparency and interpretability in AI models, which is crucial for trust and accountability in healthcare. A potential application of XAI is disease prediction using various data modalities. This study conducts a Systematic Literature Review (SLR) following the PRISMA protocol, synthesizing findings from 30 selected studies to examine XAI's evolving role in disease prediction. It explores commonly used XAI methods, such as Shapley Additive Explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME), and their impact across medical fields in disease prediction. The review highlights key gaps, including limited dataset diversity, model complexity, and reliance on single data types, emphasizing the need for greater interpretability and data integration. Addressing these issues is crucial for advancing AI in healthcare. This study contributes by outlining current challenges and potential solutions, suggesting directions for future research to develop more reliable and robust XAI methods.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.