Seed coat transcriptomic profiling of 5-593, a genotype important for genetic studies of seed coat color and patterning in common bean (Phaseolus vulgaris L.).

IF 4.3 2区 生物学 Q1 PLANT SCIENCES
Jayanta Roy, Avinash Sreedasyam, Caroline Osborne, Rian Lee, Phillip E McClean
{"title":"Seed coat transcriptomic profiling of 5-593, a genotype important for genetic studies of seed coat color and patterning in common bean (Phaseolus vulgaris L.).","authors":"Jayanta Roy, Avinash Sreedasyam, Caroline Osborne, Rian Lee, Phillip E McClean","doi":"10.1186/s12870-025-06282-7","DOIUrl":null,"url":null,"abstract":"<p><p>Common bean (Phaseolus vulgaris L.) market classes have distinct seed coat colors, which are directly related to the diverse flavonoids found in the mature seed coat. To understand and elucidate the molecular mechanisms underlying the regulation of seed coat color, RNA-Seq data was collected from the black bean 5-593 and used for a differential gene expression and enrichment analysis from four different seed coat color development stages. 5-593 carries dominant alleles for 10 of the 11 major genes that control seed coat color and expression and has historically been used to develop introgression lines used for seed coat genetic analysis. Pairwise comparison among the four stages identified 6,294 differentially expressed genes (DEGs) varying from 508 to 5,780 DEGs depending on the compared stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction comprised the principal pathways expressed during bean seed coat pigment development. Transcriptome analysis suggested that most structural genes for flavonoid biosynthesis and some potential regulatory genes were significantly differentially expressed. Further studies detected 29 DEGs as important candidate genes governing the key enzymatic flavonoid biosynthetic pathways for common bean seed coat color development. Additionally, four gene models, Pv5-593.02G016100, 593.02G078700, Pv5-593.02G090900, and Pv5-593.06G121300, encode MYB-like transcription factor family protein were identified as strong candidate regulatory genes in anthocyanin biosynthesis which could regulate the expression levels of some important structural genes in flavonoid biosynthesis pathway. These findings provide a framework to draw new insights into the molecular networks underlying common bean seed coat pigment development.</p>","PeriodicalId":9198,"journal":{"name":"BMC Plant Biology","volume":"25 1","pages":"284"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881399/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12870-025-06282-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Common bean (Phaseolus vulgaris L.) market classes have distinct seed coat colors, which are directly related to the diverse flavonoids found in the mature seed coat. To understand and elucidate the molecular mechanisms underlying the regulation of seed coat color, RNA-Seq data was collected from the black bean 5-593 and used for a differential gene expression and enrichment analysis from four different seed coat color development stages. 5-593 carries dominant alleles for 10 of the 11 major genes that control seed coat color and expression and has historically been used to develop introgression lines used for seed coat genetic analysis. Pairwise comparison among the four stages identified 6,294 differentially expressed genes (DEGs) varying from 508 to 5,780 DEGs depending on the compared stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that phenylpropanoid biosynthesis, flavonoid biosynthesis, and plant hormone signal transduction comprised the principal pathways expressed during bean seed coat pigment development. Transcriptome analysis suggested that most structural genes for flavonoid biosynthesis and some potential regulatory genes were significantly differentially expressed. Further studies detected 29 DEGs as important candidate genes governing the key enzymatic flavonoid biosynthetic pathways for common bean seed coat color development. Additionally, four gene models, Pv5-593.02G016100, 593.02G078700, Pv5-593.02G090900, and Pv5-593.06G121300, encode MYB-like transcription factor family protein were identified as strong candidate regulatory genes in anthocyanin biosynthesis which could regulate the expression levels of some important structural genes in flavonoid biosynthesis pathway. These findings provide a framework to draw new insights into the molecular networks underlying common bean seed coat pigment development.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Plant Biology
BMC Plant Biology 生物-植物科学
CiteScore
8.40
自引率
3.80%
发文量
539
审稿时长
3.8 months
期刊介绍: BMC Plant Biology is an open access, peer-reviewed journal that considers articles on all aspects of plant biology, including molecular, cellular, tissue, organ and whole organism research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信