Identification of an IRF8 gene in common carp (Cyprinus carpio. L) and its regulatory role in immune responses.

IF 2.3 2区 农林科学 Q1 VETERINARY SCIENCES
Yaoyao Zhu, Guiwen Yang
{"title":"Identification of an IRF8 gene in common carp (Cyprinus carpio. L) and its regulatory role in immune responses.","authors":"Yaoyao Zhu, Guiwen Yang","doi":"10.1186/s12917-025-04607-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Interferon (IFN) regulatory factors (IRF) are the crucial transcription factors for IFN expression and leading host cells response to viral infection. IRF8 in mammals plays vital roles in the innate and adaptive immune systems. In this study, we identified and characterized the common carp (Cyprinus carpio. L) IRF8 gene (ccIRF8) to further clarify the function of IRF8 in teleost fish.</p><p><strong>Results: </strong>The complete cDNA sequence of ccIRF8 was 1431 bp and encodes a polypeptide of 431 amino acids. Analysis of the putative amino acid sequence showed that ccIRF8 encodes structures typical of the IRF family, including a DNA-binding domain (DBD), an IRF-association domain (IAD) and two nuclear localization signals (NLS). Comparison with homologous proteins showed that the deduced protein has the highest sequence identity to grass carp IRF8 (92.7%). Phylogenetic analysis grouped ccIRF8 with other IRF8s of teleosts. Quantitative RT-PCR analysis showed that ccIRF8 transcripts were detectable in all investigated tissues of healthy fish with the highest level in spleen. Following poly I: C and Aeromonas hydrophila challenge, ccIRF8 transcripts were induced significantly in immune relevant tissues. In addition, ccIRF8 was induced by poly I: C and ipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in HKLs. Overexpression of ccIRF8 increased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that ccIRF8 decreased the activation of NF-κB though TRAF6.</p><p><strong>Conclusions: </strong>Overall, our findings provide a new perspective on the role of IRF8 in innate immunity in fish, as well as insights that will help the prevention and control of disease in the common carp farming industry.</p>","PeriodicalId":9041,"journal":{"name":"BMC Veterinary Research","volume":"21 1","pages":"143"},"PeriodicalIF":2.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881467/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s12917-025-04607-0","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Interferon (IFN) regulatory factors (IRF) are the crucial transcription factors for IFN expression and leading host cells response to viral infection. IRF8 in mammals plays vital roles in the innate and adaptive immune systems. In this study, we identified and characterized the common carp (Cyprinus carpio. L) IRF8 gene (ccIRF8) to further clarify the function of IRF8 in teleost fish.

Results: The complete cDNA sequence of ccIRF8 was 1431 bp and encodes a polypeptide of 431 amino acids. Analysis of the putative amino acid sequence showed that ccIRF8 encodes structures typical of the IRF family, including a DNA-binding domain (DBD), an IRF-association domain (IAD) and two nuclear localization signals (NLS). Comparison with homologous proteins showed that the deduced protein has the highest sequence identity to grass carp IRF8 (92.7%). Phylogenetic analysis grouped ccIRF8 with other IRF8s of teleosts. Quantitative RT-PCR analysis showed that ccIRF8 transcripts were detectable in all investigated tissues of healthy fish with the highest level in spleen. Following poly I: C and Aeromonas hydrophila challenge, ccIRF8 transcripts were induced significantly in immune relevant tissues. In addition, ccIRF8 was induced by poly I: C and ipopolysaccharide (LPS), peptidoglycan (PGN) and flagellin in HKLs. Overexpression of ccIRF8 increased the expression of IFN and IFN-stimulated genes (ISGs), and a dual-luciferase reporter assay revealed that ccIRF8 decreased the activation of NF-κB though TRAF6.

Conclusions: Overall, our findings provide a new perspective on the role of IRF8 in innate immunity in fish, as well as insights that will help the prevention and control of disease in the common carp farming industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
BMC Veterinary Research
BMC Veterinary Research VETERINARY SCIENCES-
CiteScore
4.80
自引率
3.80%
发文量
420
审稿时长
3-6 weeks
期刊介绍: BMC Veterinary Research is an open access, peer-reviewed journal that considers articles on all aspects of veterinary science and medicine, including the epidemiology, diagnosis, prevention and treatment of medical conditions of domestic, companion, farm and wild animals, as well as the biomedical processes that underlie their health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信