A novel biomimetic strategy for mimicking amelogenesis to repair enamel.

IF 4.6 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Xu Chen, Cheng Zhi, Xinye Zhou, Fan Li, Yangyang Ye, Bing Sun, Dongping Zhao, Zongren Liu, Xiangyu Zhang, Kai Zhang, Bin Liu, Xu Zhang
{"title":"A novel biomimetic strategy for mimicking amelogenesis to repair enamel.","authors":"Xu Chen, Cheng Zhi, Xinye Zhou, Fan Li, Yangyang Ye, Bing Sun, Dongping Zhao, Zongren Liu, Xiangyu Zhang, Kai Zhang, Bin Liu, Xu Zhang","doi":"10.1016/j.dental.2025.02.009","DOIUrl":null,"url":null,"abstract":"<p><p>According to the principle of minimal invasiveness in modern dentistry, biomimetic remineralization therapy constitutes a significant strategy for the prevention and treatment of early enamel caries. Based on the three \"key events\" of amelogenesis in vivo, silk fibroin (SF) combined with carboxymethyl chitosan (CMC) successfully formed an SF/CMC composite, and amorphous calcium phosphate (ACP) was then used to form an SF/CMC-ACP nanocomposite with remineralization properties. In our study, SF was used as a template protein for biomimetic amelogenin, ACP was stabilized with CMC and the remineralization was guided using NaClO to simulate the action of proteolytic enzymes. The SF/CMC-ACP nanocomposite demonstrated excellent biocompatibility and enamel remineralization effects in both in vitro/in vivo experiments; thus, a theoretical basis for biomimetic enamel remineralization studies was provided.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2025.02.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

According to the principle of minimal invasiveness in modern dentistry, biomimetic remineralization therapy constitutes a significant strategy for the prevention and treatment of early enamel caries. Based on the three "key events" of amelogenesis in vivo, silk fibroin (SF) combined with carboxymethyl chitosan (CMC) successfully formed an SF/CMC composite, and amorphous calcium phosphate (ACP) was then used to form an SF/CMC-ACP nanocomposite with remineralization properties. In our study, SF was used as a template protein for biomimetic amelogenin, ACP was stabilized with CMC and the remineralization was guided using NaClO to simulate the action of proteolytic enzymes. The SF/CMC-ACP nanocomposite demonstrated excellent biocompatibility and enamel remineralization effects in both in vitro/in vivo experiments; thus, a theoretical basis for biomimetic enamel remineralization studies was provided.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dental Materials
Dental Materials 工程技术-材料科学:生物材料
CiteScore
9.80
自引率
10.00%
发文量
290
审稿时长
67 days
期刊介绍: Dental Materials publishes original research, review articles, and short communications. Academy of Dental Materials members click here to register for free access to Dental Materials online. The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology. Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信