Establishment of vascularized human retinal organoids from induced pluripotent stem cells.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2025-03-04 DOI:10.1093/stmcls/sxae093
Satoshi Inagaki, Shinsuke Nakamura, Yoshiki Kuse, Kota Aoshima, Michinori Funato, Masamitsu Shimazawa, Hideaki Hara
{"title":"Establishment of vascularized human retinal organoids from induced pluripotent stem cells.","authors":"Satoshi Inagaki, Shinsuke Nakamura, Yoshiki Kuse, Kota Aoshima, Michinori Funato, Masamitsu Shimazawa, Hideaki Hara","doi":"10.1093/stmcls/sxae093","DOIUrl":null,"url":null,"abstract":"<p><p>Stem cell-derived retinal organoids (ROs) have been investigated for applications in regenerative medicine, retinal disease models, and compound safety evaluation. Although the development of 3D organoids has provided novel opportunities for innovation, some unresolved limitations continue to exist in organoid research. The passive diffusion of oxygen and nutrients limits the growth and functional gain of organoids. Vascularization may circumvent these problems because it allows oxygen and nutrients to enter the organoid core. In the present study, ROs and vascular organoids (VOs) were generated from healthy human induced pluripotent stem cells. We attempted to create vascular-like structures in ROs by co-culturing them with VO-derived vascular endothelial cells/pericytes. Our vascularized retinal organoids (vROs) contained type IV collagen- and CD31-positive vascular-like structures. The expression of the mature neuronal marker SMI-32 and SNCG was markedly higher in the vROs than in the ROs. When vROs were cultured under conditions that mimicked diabetes, their size and the number of retinal ganglion cells were significantly decreased. In conclusion, the co-culture of ROs with VO-derived cells enabled the production of ROs with vascular-like structures, and the vROs responded to severe diabetic retinopathy conditions. In summary, our findings underscore the potential of vROs as invaluable tools for elucidating disease mechanisms and screening therapeutic interventions for retinal vascular disorders, thereby paving the way for personalized medicine approaches in ophthalmology.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae093","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Stem cell-derived retinal organoids (ROs) have been investigated for applications in regenerative medicine, retinal disease models, and compound safety evaluation. Although the development of 3D organoids has provided novel opportunities for innovation, some unresolved limitations continue to exist in organoid research. The passive diffusion of oxygen and nutrients limits the growth and functional gain of organoids. Vascularization may circumvent these problems because it allows oxygen and nutrients to enter the organoid core. In the present study, ROs and vascular organoids (VOs) were generated from healthy human induced pluripotent stem cells. We attempted to create vascular-like structures in ROs by co-culturing them with VO-derived vascular endothelial cells/pericytes. Our vascularized retinal organoids (vROs) contained type IV collagen- and CD31-positive vascular-like structures. The expression of the mature neuronal marker SMI-32 and SNCG was markedly higher in the vROs than in the ROs. When vROs were cultured under conditions that mimicked diabetes, their size and the number of retinal ganglion cells were significantly decreased. In conclusion, the co-culture of ROs with VO-derived cells enabled the production of ROs with vascular-like structures, and the vROs responded to severe diabetic retinopathy conditions. In summary, our findings underscore the potential of vROs as invaluable tools for elucidating disease mechanisms and screening therapeutic interventions for retinal vascular disorders, thereby paving the way for personalized medicine approaches in ophthalmology.

求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信