Functional connectivity changes in mouse models of maple syrup urine disease.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Sarah Lavery, Temilola E Adepoju, Hayden B Fisher, Claudia Chan, Amanda Kuhs, Rebecca C Ahrens-Nicklas, Brian R White
{"title":"Functional connectivity changes in mouse models of maple syrup urine disease.","authors":"Sarah Lavery, Temilola E Adepoju, Hayden B Fisher, Claudia Chan, Amanda Kuhs, Rebecca C Ahrens-Nicklas, Brian R White","doi":"10.1093/cercor/bhaf040","DOIUrl":null,"url":null,"abstract":"<p><p>Maple syrup urine disease is a rare metabolic disorder that results in neurodevelopmental injury despite dietary therapy. While structural neuroimaging has shown a characteristic pattern of edema and white matter injury, no functional neuroimaging studies of maple syrup urine disease have been performed. Using widefield optical imaging, we investigated resting-state functional connectivity in two brain-specific mouse models of maple syrup urine disease (an astrocyte-specific knockout and a whole-brain knockout). At 8 weeks, mouse functional neuroimaging was performed using a custom-built widefield optical imaging system. Imaging was performed before and after initiation of a high-protein diet for 1 week to mimic metabolic crisis, which we hypothesized would result in decreased functional connectivity strength. Data were analyzed using seed-based functional connectivity and cluster-based inference. Astrocyte-specific knockout mice developed increased contralateral functional connectivity within the posteromedial somatosensory cortex after diet initiation. Whole-brain knockout mice had a similar pattern present at baseline, which persisted after diet initiation. Thus, contrary to expectations, maple syrup urine disease resulted in increased functional connectivity strength, especially after diet initiation. While the underlying etiology of these changes is unclear, these results demonstrate that inborn errors of metabolism result in changes to functional connectivity networks. Further research may demonstrate functional neuroimaging biomarkers that could be translated to clinical care.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879283/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf040","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Maple syrup urine disease is a rare metabolic disorder that results in neurodevelopmental injury despite dietary therapy. While structural neuroimaging has shown a characteristic pattern of edema and white matter injury, no functional neuroimaging studies of maple syrup urine disease have been performed. Using widefield optical imaging, we investigated resting-state functional connectivity in two brain-specific mouse models of maple syrup urine disease (an astrocyte-specific knockout and a whole-brain knockout). At 8 weeks, mouse functional neuroimaging was performed using a custom-built widefield optical imaging system. Imaging was performed before and after initiation of a high-protein diet for 1 week to mimic metabolic crisis, which we hypothesized would result in decreased functional connectivity strength. Data were analyzed using seed-based functional connectivity and cluster-based inference. Astrocyte-specific knockout mice developed increased contralateral functional connectivity within the posteromedial somatosensory cortex after diet initiation. Whole-brain knockout mice had a similar pattern present at baseline, which persisted after diet initiation. Thus, contrary to expectations, maple syrup urine disease resulted in increased functional connectivity strength, especially after diet initiation. While the underlying etiology of these changes is unclear, these results demonstrate that inborn errors of metabolism result in changes to functional connectivity networks. Further research may demonstrate functional neuroimaging biomarkers that could be translated to clinical care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信