Investigating the complex cortical dynamics of an advanced concentrative absorption meditation called jhanas (ACAM-J): a geometric eigenmode analysis.

IF 2.9 2区 医学 Q2 NEUROSCIENCES
Ruby M Potash, Winson F Z Yang, Brian Winston, Selen Atasoy, Morten L Kringelbach, Terje Sparby, Matthew D Sacchet
{"title":"Investigating the complex cortical dynamics of an advanced concentrative absorption meditation called jhanas (ACAM-J): a geometric eigenmode analysis.","authors":"Ruby M Potash, Winson F Z Yang, Brian Winston, Selen Atasoy, Morten L Kringelbach, Terje Sparby, Matthew D Sacchet","doi":"10.1093/cercor/bhaf039","DOIUrl":null,"url":null,"abstract":"<p><p>Advanced meditation has been associated with long- and short-term psychological changes such as bliss, profound insight, and transformation of well-being. However, most advanced meditation neuroimaging analyses have implemented primarily spatially-localized approaches, focusing on discrete regional changes in activity rather than distributed dynamics. The present study uses a geometric eigenmode decomposition of ultrahigh field-strength 7T functional magnetic resonance imaging (fMRI) data from an intensely sampled case study to investigate the complex, distributed cortical dynamics associated with advanced concentrative absorption meditation. Geometric eigenmode decomposition of advanced concentrative absorption meditation and non-meditative control task fMRI data revealed elevated global brain state power and energy patterns of specific advanced concentrative absorption meditation states compared to controls, with mid-frequency spectrum brain state power and energy following a non-random, cubic trajectory through the advanced concentrative absorption meditation sequence. Further, these brain state differences were meaningfully associated with subjective phenomenological reports of attention, intensity of advanced concentrative absorption meditation quality, and sensations. This study unites precise methodological design, a novel fMRI decomposition framework, and rigorous phenomenology to provide valuable insights into the distributed neural signatures of highly refined conscious states. These results underscore similarities and differences between advanced concentrative absorption meditation and other altered states of consciousness like those induced by psychedelics-offering insights into refined conscious states and their implications for health and well-being.</p>","PeriodicalId":9715,"journal":{"name":"Cerebral cortex","volume":"35 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11879328/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cerebral cortex","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/cercor/bhaf039","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Advanced meditation has been associated with long- and short-term psychological changes such as bliss, profound insight, and transformation of well-being. However, most advanced meditation neuroimaging analyses have implemented primarily spatially-localized approaches, focusing on discrete regional changes in activity rather than distributed dynamics. The present study uses a geometric eigenmode decomposition of ultrahigh field-strength 7T functional magnetic resonance imaging (fMRI) data from an intensely sampled case study to investigate the complex, distributed cortical dynamics associated with advanced concentrative absorption meditation. Geometric eigenmode decomposition of advanced concentrative absorption meditation and non-meditative control task fMRI data revealed elevated global brain state power and energy patterns of specific advanced concentrative absorption meditation states compared to controls, with mid-frequency spectrum brain state power and energy following a non-random, cubic trajectory through the advanced concentrative absorption meditation sequence. Further, these brain state differences were meaningfully associated with subjective phenomenological reports of attention, intensity of advanced concentrative absorption meditation quality, and sensations. This study unites precise methodological design, a novel fMRI decomposition framework, and rigorous phenomenology to provide valuable insights into the distributed neural signatures of highly refined conscious states. These results underscore similarities and differences between advanced concentrative absorption meditation and other altered states of consciousness like those induced by psychedelics-offering insights into refined conscious states and their implications for health and well-being.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Cerebral cortex
Cerebral cortex 医学-神经科学
CiteScore
6.30
自引率
8.10%
发文量
510
审稿时长
2 months
期刊介绍: Cerebral Cortex publishes papers on the development, organization, plasticity, and function of the cerebral cortex, including the hippocampus. Studies with clear relevance to the cerebral cortex, such as the thalamocortical relationship or cortico-subcortical interactions, are also included. The journal is multidisciplinary and covers the large variety of modern neurobiological and neuropsychological techniques, including anatomy, biochemistry, molecular neurobiology, electrophysiology, behavior, artificial intelligence, and theoretical modeling. In addition to research articles, special features such as brief reviews, book reviews, and commentaries are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信