Unraveling the Geometrical Effects on Singlet Fission of Carotenoids: A Model Perspective.

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
The Journal of Physical Chemistry A Pub Date : 2025-03-20 Epub Date: 2025-03-05 DOI:10.1021/acs.jpca.5c00060
Supriyo Santra, Debashree Ghosh
{"title":"Unraveling the Geometrical Effects on Singlet Fission of Carotenoids: A Model Perspective.","authors":"Supriyo Santra, Debashree Ghosh","doi":"10.1021/acs.jpca.5c00060","DOIUrl":null,"url":null,"abstract":"<p><p>Singlet fission (SF) is a phenomenon that generates multiple excitons (triplets) on different chromophores from a single exciton (singlet) on one chromophore. Owing to the strong electronic correlation and a complicated excited state manifold of carotenoids (polyenes), the SF mechanism in carotenoids is different from acenes shown in <i>J. Phys. Chem. Lett.</i>, <b>2022</b>, <i>13</i>, 6800-6805. However, the mechanism is expected to have significant effects of the geometry in the excited state and strong vibronic couplings between these low-lying excited states. Employing high-level state-of-the-art electronic structure methods, we show that the dark <i>A</i><sub>g</sub> states and charge transfer components play a major role in the SF process. The success of the process is strongly dependent on the relative orientation of the monomers. We have also shown that the high-frequency modes involving changes in bond length alternation are strongly coupled to the excited electronic states. These nuclear vibrational modes facilitate the SF process.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":" ","pages":"2738-2744"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpca.5c00060","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Singlet fission (SF) is a phenomenon that generates multiple excitons (triplets) on different chromophores from a single exciton (singlet) on one chromophore. Owing to the strong electronic correlation and a complicated excited state manifold of carotenoids (polyenes), the SF mechanism in carotenoids is different from acenes shown in J. Phys. Chem. Lett., 2022, 13, 6800-6805. However, the mechanism is expected to have significant effects of the geometry in the excited state and strong vibronic couplings between these low-lying excited states. Employing high-level state-of-the-art electronic structure methods, we show that the dark Ag states and charge transfer components play a major role in the SF process. The success of the process is strongly dependent on the relative orientation of the monomers. We have also shown that the high-frequency modes involving changes in bond length alternation are strongly coupled to the excited electronic states. These nuclear vibrational modes facilitate the SF process.

求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信