Evangelia Notari, Christopher W Wood, Julien Michel
{"title":"Assessment of the Topology and Oligomerisation States of Coiled Coils Using Metadynamics with Conformational Restraints.","authors":"Evangelia Notari, Christopher W Wood, Julien Michel","doi":"10.1021/acs.jctc.4c01695","DOIUrl":null,"url":null,"abstract":"<p><p>Coiled-coil proteins provide an excellent scaffold for multistate <i>de novo</i> protein design due to their established sequence-to-structure relationships and ability to switch conformations in response to external stimuli, such as changes in pH or temperature. However, the computational design of multistate coiled-coil protein assemblies is challenging, as it requires accurate estimates of the free energy differences between multiple alternative coiled-coil conformations. Here, we demonstrate how this challenge can be tackled using metadynamics simulations with orientational, positional and conformational restraints. We show that, even for subtle sequence variations, our protocol can predict the preferred topology of coiled-coil dimers and trimers, the preferred oligomerization states of coiled-coil dimers, trimers, and tetramers, as well as the switching behavior of a pH-dependent multistate system. Our approach provides a method for predicting the stability of coiled-coil designs and offers a new framework for computing binding free energies in protein-protein and multiprotein complexes.</p>","PeriodicalId":45,"journal":{"name":"Journal of Chemical Theory and Computation","volume":" ","pages":"3260-3276"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948332/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Theory and Computation","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jctc.4c01695","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Coiled-coil proteins provide an excellent scaffold for multistate de novo protein design due to their established sequence-to-structure relationships and ability to switch conformations in response to external stimuli, such as changes in pH or temperature. However, the computational design of multistate coiled-coil protein assemblies is challenging, as it requires accurate estimates of the free energy differences between multiple alternative coiled-coil conformations. Here, we demonstrate how this challenge can be tackled using metadynamics simulations with orientational, positional and conformational restraints. We show that, even for subtle sequence variations, our protocol can predict the preferred topology of coiled-coil dimers and trimers, the preferred oligomerization states of coiled-coil dimers, trimers, and tetramers, as well as the switching behavior of a pH-dependent multistate system. Our approach provides a method for predicting the stability of coiled-coil designs and offers a new framework for computing binding free energies in protein-protein and multiprotein complexes.
期刊介绍:
The Journal of Chemical Theory and Computation invites new and original contributions with the understanding that, if accepted, they will not be published elsewhere. Papers reporting new theories, methodology, and/or important applications in quantum electronic structure, molecular dynamics, and statistical mechanics are appropriate for submission to this Journal. Specific topics include advances in or applications of ab initio quantum mechanics, density functional theory, design and properties of new materials, surface science, Monte Carlo simulations, solvation models, QM/MM calculations, biomolecular structure prediction, and molecular dynamics in the broadest sense including gas-phase dynamics, ab initio dynamics, biomolecular dynamics, and protein folding. The Journal does not consider papers that are straightforward applications of known methods including DFT and molecular dynamics. The Journal favors submissions that include advances in theory or methodology with applications to compelling problems.