Jiahui Yang, Zhiyuan Wang, Zepeng Li, Haoyang Xu, Bin Xue, Yi Cao, Zhaojie Li, Yiran Li
{"title":"Halogen-Atom-Substituted DOPA with Enhanced Wet Adhesion and Antioxidization Ability.","authors":"Jiahui Yang, Zhiyuan Wang, Zepeng Li, Haoyang Xu, Bin Xue, Yi Cao, Zhaojie Li, Yiran Li","doi":"10.1021/acs.biomac.4c01338","DOIUrl":null,"url":null,"abstract":"<p><p>3,4-Dihydroxyphenylalanine (DOPA) has inspired the development of artificial adhesives, but efforts to enhance its adhesion strength and durability continue to evolve. However, it is tough work to improve DOPA wet adhesion by chemically decorating DOPA itself, despite the potential benefit of a concise and high-quality adhesion unit. Here, we synthesized a series of DOPA substituents by introducing different electron-withdrawing groups at the ortho position of the phenyl ring. This modification allowed us to effectively control the adhesion and antioxidation properties of DOPA. Combining atomic force microscopy (AFM)-based single-molecule force spectroscopy (SFMS) and cyclic voltammetry, we comprehensively investigated DOPA's antioxidation and adhesion capabilities. We found that adding a chlorine or bromine atom to the catechol ring significantly increases the DOPA wet adhesion strength. Additionally, halogen-substituted DOPA exhibited greater stability than dopamine in liquid solutions. Notably, chlorine-substituted DOPA maintained a strong adhesion ability even in salt water, offering potential benefits for bioadhesive applications.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01338","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
3,4-Dihydroxyphenylalanine (DOPA) has inspired the development of artificial adhesives, but efforts to enhance its adhesion strength and durability continue to evolve. However, it is tough work to improve DOPA wet adhesion by chemically decorating DOPA itself, despite the potential benefit of a concise and high-quality adhesion unit. Here, we synthesized a series of DOPA substituents by introducing different electron-withdrawing groups at the ortho position of the phenyl ring. This modification allowed us to effectively control the adhesion and antioxidation properties of DOPA. Combining atomic force microscopy (AFM)-based single-molecule force spectroscopy (SFMS) and cyclic voltammetry, we comprehensively investigated DOPA's antioxidation and adhesion capabilities. We found that adding a chlorine or bromine atom to the catechol ring significantly increases the DOPA wet adhesion strength. Additionally, halogen-substituted DOPA exhibited greater stability than dopamine in liquid solutions. Notably, chlorine-substituted DOPA maintained a strong adhesion ability even in salt water, offering potential benefits for bioadhesive applications.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.