Small-Molecule FICD Inhibitors Suppress Endogenous and Pathologic FICD-Mediated Protein AMPylation.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Biology Pub Date : 2025-04-18 Epub Date: 2025-03-04 DOI:10.1021/acschembio.4c00847
Bhaskar K Chatterjee, Maroof Alam, Arghya Chakravorty, Shannon M Lacy, William Giblin, Jason Rech, Charles L Brooks, Peter Arvan, Matthias C Truttmann
{"title":"Small-Molecule FICD Inhibitors Suppress Endogenous and Pathologic FICD-Mediated Protein AMPylation.","authors":"Bhaskar K Chatterjee, Maroof Alam, Arghya Chakravorty, Shannon M Lacy, William Giblin, Jason Rech, Charles L Brooks, Peter Arvan, Matthias C Truttmann","doi":"10.1021/acschembio.4c00847","DOIUrl":null,"url":null,"abstract":"<p><p>The AMP transferase, FICD, is an emerging drug target fine-tuning stress signaling in the endoplasmic reticulum (ER). FICD is a bifunctional enzyme, catalyzing both AMP addition (AMPylation) and removal (deAMPylation) from the ER-resident chaperone BiP/GRP78. Despite increasing evidence linking excessive BiP/GRP78 AMPylation to human diseases, small molecules that inhibit pathogenic FICD variants are lacking. Using an <i>in vitro</i> high-throughput screen, we identify two small-molecule FICD inhibitors, C22 and C73. Both molecules significantly inhibit FICD-mediated BiP/GRP78 AMPylation in intact cells while only weakly inhibiting BiP/GRP78 deAMPylation. C22 and C73 also inhibit pathogenic FICD variants and improve proinsulin processing in β cells. Our study identifies and validates FICD inhibitors, highlighting a novel therapeutic avenue against pathologic protein AMPylation.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"880-895"},"PeriodicalIF":3.5000,"publicationDate":"2025-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12007993/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00847","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The AMP transferase, FICD, is an emerging drug target fine-tuning stress signaling in the endoplasmic reticulum (ER). FICD is a bifunctional enzyme, catalyzing both AMP addition (AMPylation) and removal (deAMPylation) from the ER-resident chaperone BiP/GRP78. Despite increasing evidence linking excessive BiP/GRP78 AMPylation to human diseases, small molecules that inhibit pathogenic FICD variants are lacking. Using an in vitro high-throughput screen, we identify two small-molecule FICD inhibitors, C22 and C73. Both molecules significantly inhibit FICD-mediated BiP/GRP78 AMPylation in intact cells while only weakly inhibiting BiP/GRP78 deAMPylation. C22 and C73 also inhibit pathogenic FICD variants and improve proinsulin processing in β cells. Our study identifies and validates FICD inhibitors, highlighting a novel therapeutic avenue against pathologic protein AMPylation.

小分子FICD抑制剂抑制内源性和病理性FICD介导的蛋白amppyation。
AMP转移酶(FICD)是一种新兴的靶向内质网(ER)微调应激信号的药物。FICD是一种双功能酶,可催化内质网伴侣BiP/GRP78的AMP加成(AMPylation)和去除(deAMPylation)。尽管越来越多的证据表明过度的BiP/GRP78 ampyylation与人类疾病有关,但抑制致病性FICD变体的小分子仍然缺乏。通过体外高通量筛选,我们鉴定出两种小分子FICD抑制剂C22和C73。在完整细胞中,这两种分子均显著抑制ficd介导的BiP/GRP78 ampyation,而仅微弱抑制BiP/GRP78 deampyation。C22和C73还能抑制致病性FICD变异并改善β细胞中的胰岛素原加工。我们的研究鉴定并验证了FICD抑制剂,强调了一种针对病理性蛋白ampyation的新治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信