Engineered Drug-Amphiphile Conjugate Nanoparticles for Targeted Inhibition of AQP4-Mediated NLRP3 Inflammasome Signaling in Collagen-Induced Rheumatoid Arthritis.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Ajay Kumar, Rahul, Kanika, Jattin Kumar, Anas Ahmad, Aneesh Ali, Bhuvnesh Kumar, Shubham Mahajan, Nemat Ali, Rehan Khan
{"title":"Engineered Drug-Amphiphile Conjugate Nanoparticles for Targeted Inhibition of AQP4-Mediated NLRP3 Inflammasome Signaling in Collagen-Induced Rheumatoid Arthritis.","authors":"Ajay Kumar, Rahul, Kanika, Jattin Kumar, Anas Ahmad, Aneesh Ali, Bhuvnesh Kumar, Shubham Mahajan, Nemat Ali, Rehan Khan","doi":"10.1021/acsami.4c20973","DOIUrl":null,"url":null,"abstract":"<p><p>Aquaporins (AQPs) are transmembrane proteins that transport water, small solutes, and molecules across cell membranes. Studies have reported the role of AQPs in the activation, migration, and proliferation of immune cells, thus modulating the pathogenesis of autoimmune disease. In joints, the enhanced AQP4 expression exaggerates pathological changes like hydrarthrosis, acidosis, and hyperosmotic stress-inducing dysfunction of the articular chondrocytes, leading to articular cartilage destruction in collagen-induced arthritis (CIA). Acetazolamide (AZM), a sulfonamide carbonic anhydrase inhibitor of AQP4, reversibly decreases water permeability through AQP4 and is a potential molecule for targeting AQP4 in the CIA. However, its low solubility and low bioavailability limit its therapeutic effectiveness. Therefore, in this study, we have synthesized a polyphenol drug (gallic acid) (GA) and an amphiphile (glycerol monostearate) (GMS) conjugate to self-assemble into nanoparticles and encapsulated with AZM. Apart from AZM, GA is known for its antioxidant and anti-inflammatory properties. Therefore, intra-articular injection of AZM@GA-GMS NPs efficiently downregulates the expression of AQP4 and associated NLRP3 inflammasome activation. Moreover, the NPs are cytocompatible and showed enzyme-responsive drug release and thus offer a promising therapeutic strategy for RA by inhibiting AQP4-mediated inflammatory pathways. This opens up an avenue for treatment for RA.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20973","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aquaporins (AQPs) are transmembrane proteins that transport water, small solutes, and molecules across cell membranes. Studies have reported the role of AQPs in the activation, migration, and proliferation of immune cells, thus modulating the pathogenesis of autoimmune disease. In joints, the enhanced AQP4 expression exaggerates pathological changes like hydrarthrosis, acidosis, and hyperosmotic stress-inducing dysfunction of the articular chondrocytes, leading to articular cartilage destruction in collagen-induced arthritis (CIA). Acetazolamide (AZM), a sulfonamide carbonic anhydrase inhibitor of AQP4, reversibly decreases water permeability through AQP4 and is a potential molecule for targeting AQP4 in the CIA. However, its low solubility and low bioavailability limit its therapeutic effectiveness. Therefore, in this study, we have synthesized a polyphenol drug (gallic acid) (GA) and an amphiphile (glycerol monostearate) (GMS) conjugate to self-assemble into nanoparticles and encapsulated with AZM. Apart from AZM, GA is known for its antioxidant and anti-inflammatory properties. Therefore, intra-articular injection of AZM@GA-GMS NPs efficiently downregulates the expression of AQP4 and associated NLRP3 inflammasome activation. Moreover, the NPs are cytocompatible and showed enzyme-responsive drug release and thus offer a promising therapeutic strategy for RA by inhibiting AQP4-mediated inflammatory pathways. This opens up an avenue for treatment for RA.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信