Proteomics and Metabolomics Analyses Reveal a Dynamic Landscape of Coal Workers' Pneumoconiosis: An Insight into Disease Progression.

IF 3.8 2区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Journal of Proteome Research Pub Date : 2025-04-04 Epub Date: 2025-03-04 DOI:10.1021/acs.jproteome.4c00715
Yangyang Wei, Zhenzhen Jia, Jing Ma, Wei Zhang, Hui Li, Juan Wu, Xiaojing Wang, Xiao Yu, Yiwei Shi, Xiaomei Kong, Min Pang
{"title":"Proteomics and Metabolomics Analyses Reveal a Dynamic Landscape of Coal Workers' Pneumoconiosis: An Insight into Disease Progression.","authors":"Yangyang Wei, Zhenzhen Jia, Jing Ma, Wei Zhang, Hui Li, Juan Wu, Xiaojing Wang, Xiao Yu, Yiwei Shi, Xiaomei Kong, Min Pang","doi":"10.1021/acs.jproteome.4c00715","DOIUrl":null,"url":null,"abstract":"<p><p>Coal worker's pneumoconiosis (CWP) is characterized by chronic inflammation and pulmonary fibrosis. The key factor contributing to the incurability of CWP is the unclear pathogenesis. This study explored the characteristic changes in proteomics and metabolomics of early and advanced CWP patients through proteomics and metabolomics techniques. Proteomics identified proteins that change with the progression of CWP, with significant enrichment in the TGF-β signaling pathway and autoimmune disease pathways. Metabolomics revealed the metabolic characteristics of CWP at different stages. These metabolites mainly include changes in amino acid metabolism, unsaturated fatty acid synthesis, and related metabolites. Integrated analysis found that ABC transporters are a shared pathway among the three groups, and ABCD2 is involved in the ABC transporter pathway. In the subsequent independent sample verification analysis, consistent with proteomics experiments, compared to the CM group, FMOD expression level was upregulated in the NIC group. TFR expression level was consistently downregulated in both the IC and NIC groups. Additionally, ABCD2 increased in the IC group but decreased in the NIC group. In summary, this study revealed the metabolic characteristics of CWP at different stages. These findings may provide valuable insights for the early prediction, diagnosis, and treatment of CWP.</p>","PeriodicalId":48,"journal":{"name":"Journal of Proteome Research","volume":" ","pages":"1715-1731"},"PeriodicalIF":3.8000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Proteome Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jproteome.4c00715","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Coal worker's pneumoconiosis (CWP) is characterized by chronic inflammation and pulmonary fibrosis. The key factor contributing to the incurability of CWP is the unclear pathogenesis. This study explored the characteristic changes in proteomics and metabolomics of early and advanced CWP patients through proteomics and metabolomics techniques. Proteomics identified proteins that change with the progression of CWP, with significant enrichment in the TGF-β signaling pathway and autoimmune disease pathways. Metabolomics revealed the metabolic characteristics of CWP at different stages. These metabolites mainly include changes in amino acid metabolism, unsaturated fatty acid synthesis, and related metabolites. Integrated analysis found that ABC transporters are a shared pathway among the three groups, and ABCD2 is involved in the ABC transporter pathway. In the subsequent independent sample verification analysis, consistent with proteomics experiments, compared to the CM group, FMOD expression level was upregulated in the NIC group. TFR expression level was consistently downregulated in both the IC and NIC groups. Additionally, ABCD2 increased in the IC group but decreased in the NIC group. In summary, this study revealed the metabolic characteristics of CWP at different stages. These findings may provide valuable insights for the early prediction, diagnosis, and treatment of CWP.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Proteome Research
Journal of Proteome Research 生物-生化研究方法
CiteScore
9.00
自引率
4.50%
发文量
251
审稿时长
3 months
期刊介绍: Journal of Proteome Research publishes content encompassing all aspects of global protein analysis and function, including the dynamic aspects of genomics, spatio-temporal proteomics, metabonomics and metabolomics, clinical and agricultural proteomics, as well as advances in methodology including bioinformatics. The theme and emphasis is on a multidisciplinary approach to the life sciences through the synergy between the different types of "omics".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信