Efficiency Enhancement of CZTSSe Solar Cells via Thermal Treatment of (Zn, Mg)O Buffer Layers for Improving Crystallinity and Reducing Point Defects

IF 8 2区 材料科学 Q1 ENERGY & FUELS
Yafei Wang, Junsu Han, Shengye Tao, Liangzheng Dong, Qianming Gong, Hanpeng Wang, Mengyao Jia, Zhihao Wu, Maria Baranova, Jihui Zhou, Ming Zhao, Daming Zhuang
{"title":"Efficiency Enhancement of CZTSSe Solar Cells via Thermal Treatment of (Zn, Mg)O Buffer Layers for Improving Crystallinity and Reducing Point Defects","authors":"Yafei Wang,&nbsp;Junsu Han,&nbsp;Shengye Tao,&nbsp;Liangzheng Dong,&nbsp;Qianming Gong,&nbsp;Hanpeng Wang,&nbsp;Mengyao Jia,&nbsp;Zhihao Wu,&nbsp;Maria Baranova,&nbsp;Jihui Zhou,&nbsp;Ming Zhao,&nbsp;Daming Zhuang","doi":"10.1002/pip.3890","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The application of (Zn, Mg)O buffer layers significantly improves the energy band alignment and the interface quality of the heterojunction of CZTSSe solar cells, leading to a breakthrough in power conversion efficiency (PCE). However, (Zn, Mg)O thin films prepared by sputtering typically exhibit poor crystallinity, limiting their application. Rapid thermal processing (RTP) and substrate heating during the sputtering are investigated to address this issue. Our study demonstrates the effectiveness of RTP in reducing oxygen vacancies (V<sub>O</sub>) and adsorbed oxygen (O<sub>ad</sub>). Furthermore, it is identified that both thermal treatments increase the Mg<sub>Zn</sub>/(Mg<sub>Zn</sub> + Zn) ratio of (Zn, Mg)O thin films, thereby increasing their band gap. A notable improvement in the device performance of CZTSSe solar cells, particularly in fill factor (FF) and open-circuit voltage (<i>V</i><sub>OC</sub>), is achieved by adopting optimal thermal treatment processes. Power conversion efficiencies (PCEs) of 12.4% and 12.3% are obtained through RTP and substrate heating, which are remarkably improved compared with the untreated CZTSSe solar cells with the maximum PCE of 9.5%. Notably, 12.4% is the highest PCE for CZTSSe solar cells with (Zn, Mg)O buffers to date.</p>\n </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 4","pages":"580-590"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3890","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The application of (Zn, Mg)O buffer layers significantly improves the energy band alignment and the interface quality of the heterojunction of CZTSSe solar cells, leading to a breakthrough in power conversion efficiency (PCE). However, (Zn, Mg)O thin films prepared by sputtering typically exhibit poor crystallinity, limiting their application. Rapid thermal processing (RTP) and substrate heating during the sputtering are investigated to address this issue. Our study demonstrates the effectiveness of RTP in reducing oxygen vacancies (VO) and adsorbed oxygen (Oad). Furthermore, it is identified that both thermal treatments increase the MgZn/(MgZn + Zn) ratio of (Zn, Mg)O thin films, thereby increasing their band gap. A notable improvement in the device performance of CZTSSe solar cells, particularly in fill factor (FF) and open-circuit voltage (VOC), is achieved by adopting optimal thermal treatment processes. Power conversion efficiencies (PCEs) of 12.4% and 12.3% are obtained through RTP and substrate heating, which are remarkably improved compared with the untreated CZTSSe solar cells with the maximum PCE of 9.5%. Notably, 12.4% is the highest PCE for CZTSSe solar cells with (Zn, Mg)O buffers to date.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Progress in Photovoltaics
Progress in Photovoltaics 工程技术-能源与燃料
CiteScore
18.10
自引率
7.50%
发文量
130
审稿时长
5.4 months
期刊介绍: Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers. The key criterion is that all papers submitted should report substantial “progress” in photovoltaics. Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables. Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信