{"title":"Efficiency Enhancement of CZTSSe Solar Cells via Thermal Treatment of (Zn, Mg)O Buffer Layers for Improving Crystallinity and Reducing Point Defects","authors":"Yafei Wang, Junsu Han, Shengye Tao, Liangzheng Dong, Qianming Gong, Hanpeng Wang, Mengyao Jia, Zhihao Wu, Maria Baranova, Jihui Zhou, Ming Zhao, Daming Zhuang","doi":"10.1002/pip.3890","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The application of (Zn, Mg)O buffer layers significantly improves the energy band alignment and the interface quality of the heterojunction of CZTSSe solar cells, leading to a breakthrough in power conversion efficiency (PCE). However, (Zn, Mg)O thin films prepared by sputtering typically exhibit poor crystallinity, limiting their application. Rapid thermal processing (RTP) and substrate heating during the sputtering are investigated to address this issue. Our study demonstrates the effectiveness of RTP in reducing oxygen vacancies (V<sub>O</sub>) and adsorbed oxygen (O<sub>ad</sub>). Furthermore, it is identified that both thermal treatments increase the Mg<sub>Zn</sub>/(Mg<sub>Zn</sub> + Zn) ratio of (Zn, Mg)O thin films, thereby increasing their band gap. A notable improvement in the device performance of CZTSSe solar cells, particularly in fill factor (FF) and open-circuit voltage (<i>V</i><sub>OC</sub>), is achieved by adopting optimal thermal treatment processes. Power conversion efficiencies (PCEs) of 12.4% and 12.3% are obtained through RTP and substrate heating, which are remarkably improved compared with the untreated CZTSSe solar cells with the maximum PCE of 9.5%. Notably, 12.4% is the highest PCE for CZTSSe solar cells with (Zn, Mg)O buffers to date.</p>\n </div>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 4","pages":"580-590"},"PeriodicalIF":8.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3890","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The application of (Zn, Mg)O buffer layers significantly improves the energy band alignment and the interface quality of the heterojunction of CZTSSe solar cells, leading to a breakthrough in power conversion efficiency (PCE). However, (Zn, Mg)O thin films prepared by sputtering typically exhibit poor crystallinity, limiting their application. Rapid thermal processing (RTP) and substrate heating during the sputtering are investigated to address this issue. Our study demonstrates the effectiveness of RTP in reducing oxygen vacancies (VO) and adsorbed oxygen (Oad). Furthermore, it is identified that both thermal treatments increase the MgZn/(MgZn + Zn) ratio of (Zn, Mg)O thin films, thereby increasing their band gap. A notable improvement in the device performance of CZTSSe solar cells, particularly in fill factor (FF) and open-circuit voltage (VOC), is achieved by adopting optimal thermal treatment processes. Power conversion efficiencies (PCEs) of 12.4% and 12.3% are obtained through RTP and substrate heating, which are remarkably improved compared with the untreated CZTSSe solar cells with the maximum PCE of 9.5%. Notably, 12.4% is the highest PCE for CZTSSe solar cells with (Zn, Mg)O buffers to date.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.