Recent Advances in Iron-Containing Perovskites for Supercapacitors

IF 6.2 Q2 ENERGY & FUELS
Celal Avcıoğlu, Suna Avcıoğlu
{"title":"Recent Advances in Iron-Containing Perovskites for Supercapacitors","authors":"Celal Avcıoğlu,&nbsp;Suna Avcıoğlu","doi":"10.1002/aesr.202400289","DOIUrl":null,"url":null,"abstract":"<p>The growing energy demands in transportation and portable electronics necessitate advancements in energy storage technologies. Supercapacitors, with their exceptional power density, rapid charge–discharge capabilities, and long cycle life, provide a compelling solution for energy storage applications. However, their inherent low energy density remains a persistent challenge. To overcome this limitation, perovskite oxides, particularly those containing iron, have emerged as promising electrode materials. These materials leverage their unique structure, compositional flexibility, rich redox chemistry, and pseudocapacitive attributes. This concise overview aims to provide insights into the development of iron-containing perovskite oxides and their design principles. The discussion covers fundamental aspects of supercapacitors, iron-containing perovskite structures, synthetic methodologies, defect engineering, and the construction of composites. The overview concludes by providing a perspective, particularly regarding the challenges in designing efficient and stable supercapacitors based on iron-containing perovskite oxides.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400289","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The growing energy demands in transportation and portable electronics necessitate advancements in energy storage technologies. Supercapacitors, with their exceptional power density, rapid charge–discharge capabilities, and long cycle life, provide a compelling solution for energy storage applications. However, their inherent low energy density remains a persistent challenge. To overcome this limitation, perovskite oxides, particularly those containing iron, have emerged as promising electrode materials. These materials leverage their unique structure, compositional flexibility, rich redox chemistry, and pseudocapacitive attributes. This concise overview aims to provide insights into the development of iron-containing perovskite oxides and their design principles. The discussion covers fundamental aspects of supercapacitors, iron-containing perovskite structures, synthetic methodologies, defect engineering, and the construction of composites. The overview concludes by providing a perspective, particularly regarding the challenges in designing efficient and stable supercapacitors based on iron-containing perovskite oxides.

Abstract Image

超级电容器用含铁钙钛矿的研究进展
交通运输和便携式电子设备日益增长的能源需求需要能源存储技术的进步。超级电容器以其卓越的功率密度、快速充放电能力和长循环寿命,为储能应用提供了令人信服的解决方案。然而,它们固有的低能量密度仍然是一个持续的挑战。为了克服这一限制,钙钛矿氧化物,特别是那些含铁的,已经成为有前途的电极材料。这些材料利用其独特的结构,组成的灵活性,丰富的氧化还原化学和假电容属性。这篇简明的综述旨在提供对含铁钙钛矿氧化物的发展及其设计原理的见解。讨论涵盖了超级电容器的基本方面,含铁钙钛矿结构,合成方法,缺陷工程和复合材料的构造。概述最后提供了一个观点,特别是关于设计基于含铁钙钛矿氧化物的高效和稳定的超级电容器的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.20
自引率
3.40%
发文量
0
期刊介绍: Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields. In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including: CAS: Chemical Abstracts Service (ACS) Directory of Open Access Journals (DOAJ) Emerging Sources Citation Index (Clarivate Analytics) INSPEC (IET) Web of Science (Clarivate Analytics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信