{"title":"Recent Advances in Iron-Containing Perovskites for Supercapacitors","authors":"Celal Avcıoğlu, Suna Avcıoğlu","doi":"10.1002/aesr.202400289","DOIUrl":null,"url":null,"abstract":"<p>The growing energy demands in transportation and portable electronics necessitate advancements in energy storage technologies. Supercapacitors, with their exceptional power density, rapid charge–discharge capabilities, and long cycle life, provide a compelling solution for energy storage applications. However, their inherent low energy density remains a persistent challenge. To overcome this limitation, perovskite oxides, particularly those containing iron, have emerged as promising electrode materials. These materials leverage their unique structure, compositional flexibility, rich redox chemistry, and pseudocapacitive attributes. This concise overview aims to provide insights into the development of iron-containing perovskite oxides and their design principles. The discussion covers fundamental aspects of supercapacitors, iron-containing perovskite structures, synthetic methodologies, defect engineering, and the construction of composites. The overview concludes by providing a perspective, particularly regarding the challenges in designing efficient and stable supercapacitors based on iron-containing perovskite oxides.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400289","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The growing energy demands in transportation and portable electronics necessitate advancements in energy storage technologies. Supercapacitors, with their exceptional power density, rapid charge–discharge capabilities, and long cycle life, provide a compelling solution for energy storage applications. However, their inherent low energy density remains a persistent challenge. To overcome this limitation, perovskite oxides, particularly those containing iron, have emerged as promising electrode materials. These materials leverage their unique structure, compositional flexibility, rich redox chemistry, and pseudocapacitive attributes. This concise overview aims to provide insights into the development of iron-containing perovskite oxides and their design principles. The discussion covers fundamental aspects of supercapacitors, iron-containing perovskite structures, synthetic methodologies, defect engineering, and the construction of composites. The overview concludes by providing a perspective, particularly regarding the challenges in designing efficient and stable supercapacitors based on iron-containing perovskite oxides.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).