Joo Han Kang, Min Gyeong Kang, Jae Jin Hong, Mi Na Kim, Woo Seong Choi, Myung Jun Oh, Seong Yun Kim
{"title":"Recycling Bottom Ash and Steel Slag Containing CaO into Electrically Insulating and Heat-Dissipating Thermal Interface Materials","authors":"Joo Han Kang, Min Gyeong Kang, Jae Jin Hong, Mi Na Kim, Woo Seong Choi, Myung Jun Oh, Seong Yun Kim","doi":"10.1002/aesr.202400291","DOIUrl":null,"url":null,"abstract":"<p>Bottom ash (BA) and steel slag (SS) wastes are generated in large quantities and primarily recycled as raw materials for concrete. However, the influx of expansive components can cause pop-outs in concrete and reduce the mechanical properties of concrete, prompting the need for alternative recycling methods. Herein, as a new method of recycling BA and SS, an electrically insulating and thermally conductive thermal interface material (TIM) is proposed by incorporating BA or SS filler into a polymer. CaO, which has historically been an obstacle to efficient recycling BA and SS into concrete, is found to improve the thermal conductivity of TIMs. The resulting TIMs exhibit both effective electrical insulation (<2.99 × 10<sup>−9</sup> S m<sup>−1</sup>) and thermal dissipation (3.64 W m<sup>−1</sup> K<sup>−1</sup>) properties. The proposed recycling method based on BA and SS can contribute to the development of low-cost, electrically insulating, and heat-dissipating TIMs.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400291","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400291","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Bottom ash (BA) and steel slag (SS) wastes are generated in large quantities and primarily recycled as raw materials for concrete. However, the influx of expansive components can cause pop-outs in concrete and reduce the mechanical properties of concrete, prompting the need for alternative recycling methods. Herein, as a new method of recycling BA and SS, an electrically insulating and thermally conductive thermal interface material (TIM) is proposed by incorporating BA or SS filler into a polymer. CaO, which has historically been an obstacle to efficient recycling BA and SS into concrete, is found to improve the thermal conductivity of TIMs. The resulting TIMs exhibit both effective electrical insulation (<2.99 × 10−9 S m−1) and thermal dissipation (3.64 W m−1 K−1) properties. The proposed recycling method based on BA and SS can contribute to the development of low-cost, electrically insulating, and heat-dissipating TIMs.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).