Crystal Hydrogel-Based Switchable Radiative Cooling Materials for Smart Windows

IF 2.5 4区 化学 Q3 POLYMER SCIENCE
Zhuangsen Zhang, Xiaozhuang Zhou, Qianwei Liu, Xinhong Xiong, Jiaxi Cui
{"title":"Crystal Hydrogel-Based Switchable Radiative Cooling Materials for Smart Windows","authors":"Zhuangsen Zhang,&nbsp;Xiaozhuang Zhou,&nbsp;Qianwei Liu,&nbsp;Xinhong Xiong,&nbsp;Jiaxi Cui","doi":"10.1002/macp.202400394","DOIUrl":null,"url":null,"abstract":"<p>Smart windows can effectively balance the space temperature of buildings without compromising the essential functions of windows. However, conventional thermochromic windows have limited sunlight regulation capabilities and face challenges with switching as desired. Herein, A class of novel smart windows based on crystal hydrogels is introduced that achieve free switching between transparent (for heating) and opaque (for radiative cooling) states through thermal and mechanical stimuli. The crystal hydrogels are made from cross-linked polyacrylamide (PAM) and sodium acetate (NaAc). By optimizing the sodium acetate concentration and sample thickness, The combination of excellent cooling ability is achieved at the opaque state and good low-temperature stability at the transparent state in the hydrogels. Using the optimized hydrogel to prepare a smart window equipped with a heater and a mechanical trigger tip, the rapid on-demand transition between transparent and opaque states is demonstrated. The results indicate that the smart window lowers temperatures by up to 9.4 °C compared to ordinary windows and maintains stable emissivity and reflectivity even after 100 cycles due to its robust solar modulation capabilities. This technology provides new energy-saving solutions for smart buildings but also explores future applications of smart materials, showcasing innovative advantages and technical strengths in smart windows.</p>","PeriodicalId":18054,"journal":{"name":"Macromolecular Chemistry and Physics","volume":"226 5","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Chemistry and Physics","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/macp.202400394","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Smart windows can effectively balance the space temperature of buildings without compromising the essential functions of windows. However, conventional thermochromic windows have limited sunlight regulation capabilities and face challenges with switching as desired. Herein, A class of novel smart windows based on crystal hydrogels is introduced that achieve free switching between transparent (for heating) and opaque (for radiative cooling) states through thermal and mechanical stimuli. The crystal hydrogels are made from cross-linked polyacrylamide (PAM) and sodium acetate (NaAc). By optimizing the sodium acetate concentration and sample thickness, The combination of excellent cooling ability is achieved at the opaque state and good low-temperature stability at the transparent state in the hydrogels. Using the optimized hydrogel to prepare a smart window equipped with a heater and a mechanical trigger tip, the rapid on-demand transition between transparent and opaque states is demonstrated. The results indicate that the smart window lowers temperatures by up to 9.4 °C compared to ordinary windows and maintains stable emissivity and reflectivity even after 100 cycles due to its robust solar modulation capabilities. This technology provides new energy-saving solutions for smart buildings but also explores future applications of smart materials, showcasing innovative advantages and technical strengths in smart windows.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Chemistry and Physics
Macromolecular Chemistry and Physics 化学-高分子科学
CiteScore
4.30
自引率
4.00%
发文量
278
审稿时长
1.4 months
期刊介绍: Macromolecular Chemistry and Physics publishes in all areas of polymer science - from chemistry, physical chemistry, and physics of polymers to polymers in materials science. Beside an attractive mixture of high-quality Full Papers, Trends, and Highlights, the journal offers a unique article type dedicated to young scientists – Talent.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信