Environmental conditions can indirectly affect passive pathogen spread by altering insect dispersal

IF 1.4 3区 农林科学 Q2 ENTOMOLOGY
Natalie Constancio, Zsofia Szendrei
{"title":"Environmental conditions can indirectly affect passive pathogen spread by altering insect dispersal","authors":"Natalie Constancio,&nbsp;Zsofia Szendrei","doi":"10.1111/eea.13549","DOIUrl":null,"url":null,"abstract":"<p>Climate change impacts agriculture through shifts in regional environmental conditions, significantly altering insect vector and plant pathogen interactions. Plant pathogens that rely on insect vectors often have a positive density dependent relationship, with high vector abundance increasing pathogen spread. However, for pathogens that do not rely on insect vectors, the relationship can be more difficult to predict. Furthermore, environmental conditions, such as temperature and relative humidity, can indirectly alter pathogen spread by impacting vector reproduction or behavior. Therefore, studies examining the interactions between passively transmitted pathogens and potential insect vectors under varying environmental conditions are critical to understanding pathogen spread. Onion thrips, <i>Thrips tabaci</i> Lindeman (Thysanoptera: Thripidae), is the main insect pest of onion (<i>Allium cepa</i>) and co-occurs with many pathogens, including <i>Colletotrichum coccodes</i> Wallr (Glomerellales: Glomerellaceae), a fungal pathogen of onion. We conducted two experiments to understand how different densities of onion thrips and environmental conditions affect pathogen spread. To first determine how onion thrips density affects pathogen spread, we released 0, 5, or 25 onion thrips on <i>C. coccodes</i> inoculated plants, that were symptomatic, and allowed them to move between the symptomatic and asymptomatic plants. Next, to determine the effects of environmental conditions on pathogen spread, we altered temperature and relative humidity and added either 0 or 5 onion thrips to the experiment. Onion thrips dispersal, damage distribution, and pathogen spread 13 days after onion thrips were released were assessed for each experiment. Our results indicate that <i>C. coccodes</i> was only disseminated in the presence of onion thrips and dispersal increased at the 25 onion thrips density. Pathogen spread also increased at 33°C compared with 22°C, regardless of relative humidity. Overall, our study highlights how changes in insect abundance, which can be directly affected by environmental conditions, can alter pathogen spread.</p>","PeriodicalId":11741,"journal":{"name":"Entomologia Experimentalis et Applicata","volume":"173 4","pages":"317-329"},"PeriodicalIF":1.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/eea.13549","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entomologia Experimentalis et Applicata","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eea.13549","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Climate change impacts agriculture through shifts in regional environmental conditions, significantly altering insect vector and plant pathogen interactions. Plant pathogens that rely on insect vectors often have a positive density dependent relationship, with high vector abundance increasing pathogen spread. However, for pathogens that do not rely on insect vectors, the relationship can be more difficult to predict. Furthermore, environmental conditions, such as temperature and relative humidity, can indirectly alter pathogen spread by impacting vector reproduction or behavior. Therefore, studies examining the interactions between passively transmitted pathogens and potential insect vectors under varying environmental conditions are critical to understanding pathogen spread. Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), is the main insect pest of onion (Allium cepa) and co-occurs with many pathogens, including Colletotrichum coccodes Wallr (Glomerellales: Glomerellaceae), a fungal pathogen of onion. We conducted two experiments to understand how different densities of onion thrips and environmental conditions affect pathogen spread. To first determine how onion thrips density affects pathogen spread, we released 0, 5, or 25 onion thrips on C. coccodes inoculated plants, that were symptomatic, and allowed them to move between the symptomatic and asymptomatic plants. Next, to determine the effects of environmental conditions on pathogen spread, we altered temperature and relative humidity and added either 0 or 5 onion thrips to the experiment. Onion thrips dispersal, damage distribution, and pathogen spread 13 days after onion thrips were released were assessed for each experiment. Our results indicate that C. coccodes was only disseminated in the presence of onion thrips and dispersal increased at the 25 onion thrips density. Pathogen spread also increased at 33°C compared with 22°C, regardless of relative humidity. Overall, our study highlights how changes in insect abundance, which can be directly affected by environmental conditions, can alter pathogen spread.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
5.30%
发文量
138
审稿时长
4-8 weeks
期刊介绍: Entomologia Experimentalis et Applicata publishes top quality original research papers in the fields of experimental biology and ecology of insects and other terrestrial arthropods, with both pure and applied scopes. Mini-reviews, technical notes and media reviews are also published. Although the scope of the journal covers the entire scientific field of entomology, it has established itself as the preferred medium for the communication of results in the areas of the physiological, ecological, and morphological inter-relations between phytophagous arthropods and their food plants, their parasitoids, predators, and pathogens. Examples of specific areas that are covered frequently are: host-plant selection mechanisms chemical and sensory ecology and infochemicals parasitoid-host interactions behavioural ecology biosystematics (co-)evolution migration and dispersal population modelling sampling strategies developmental and behavioural responses to photoperiod and temperature nutrition natural and transgenic plant resistance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信