Altered Functional Connectivity Dynamics Serving Cognitive Flexibility in Regular Cannabis Users

IF 3.1 3区 医学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Kellen M. McDonald, Mikki Schantell, Jason A. John, Anna T. Coutant, Ryan Glesinger, Lucy K. Horne, Hannah J. Okelberry, Seth D. Springer, Christine M. Embury, Yasra Arif, Tony W. Wilson
{"title":"Altered Functional Connectivity Dynamics Serving Cognitive Flexibility in Regular Cannabis Users","authors":"Kellen M. McDonald,&nbsp;Mikki Schantell,&nbsp;Jason A. John,&nbsp;Anna T. Coutant,&nbsp;Ryan Glesinger,&nbsp;Lucy K. Horne,&nbsp;Hannah J. Okelberry,&nbsp;Seth D. Springer,&nbsp;Christine M. Embury,&nbsp;Yasra Arif,&nbsp;Tony W. Wilson","doi":"10.1111/adb.70023","DOIUrl":null,"url":null,"abstract":"<p>Despite its widespread use and popularity, cannabis is known to impact higher order cognitive processes such as attention and executive function. However, far less is known about the impact of chronic cannabis use on cognitive flexibility, a component of executive function, and this is especially true for the underlying functional connectivity dynamics. To address this, we enrolled 25 chronic cannabis users and 30 demographically matched non-users who completed an interview probing current and past substance use, a urinalysis to confirm self-reported substance use and a task-switch cognitive paradigm during magnetoencephalography (MEG). Time-frequency windows of interest were identified using a data-driven statistical approach, and spectrally specific neural oscillatory responses were imaged using a beamformer. The resulting maps were grand-averaged across all participants and conditions, and the peak voxels in these maps of neural oscillatory activity were used as seeds to compute connectivity using a whole-brain cortical-coherence approach. Whole-brain neural switch cost connectivity maps were then computed by subtracting the connectivity map for the no-switch condition from that of the switch condition per participant. These switch cost functional connectivity maps were then correlated with the behavioural switch cost per group and probed for group differences in the neuro-behavioural associations. Our behavioural results indicated that all participants had slower reaction times during switch compared to no-switch trials. Regarding the MEG data, cannabis users exhibited altered associations between functional connectivity switch costs and behavioural switch costs along pathways connecting visual cortices and regions in the ventral attention network, within the theta, alpha and gamma frequency ranges. These results indicate modified multispectral associations between functional connectivity and behavioural switch costs among visual cortices and key brain regions underlying executive function in cannabis users.</p>","PeriodicalId":7289,"journal":{"name":"Addiction Biology","volume":"30 3","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/adb.70023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Addiction Biology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/adb.70023","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite its widespread use and popularity, cannabis is known to impact higher order cognitive processes such as attention and executive function. However, far less is known about the impact of chronic cannabis use on cognitive flexibility, a component of executive function, and this is especially true for the underlying functional connectivity dynamics. To address this, we enrolled 25 chronic cannabis users and 30 demographically matched non-users who completed an interview probing current and past substance use, a urinalysis to confirm self-reported substance use and a task-switch cognitive paradigm during magnetoencephalography (MEG). Time-frequency windows of interest were identified using a data-driven statistical approach, and spectrally specific neural oscillatory responses were imaged using a beamformer. The resulting maps were grand-averaged across all participants and conditions, and the peak voxels in these maps of neural oscillatory activity were used as seeds to compute connectivity using a whole-brain cortical-coherence approach. Whole-brain neural switch cost connectivity maps were then computed by subtracting the connectivity map for the no-switch condition from that of the switch condition per participant. These switch cost functional connectivity maps were then correlated with the behavioural switch cost per group and probed for group differences in the neuro-behavioural associations. Our behavioural results indicated that all participants had slower reaction times during switch compared to no-switch trials. Regarding the MEG data, cannabis users exhibited altered associations between functional connectivity switch costs and behavioural switch costs along pathways connecting visual cortices and regions in the ventral attention network, within the theta, alpha and gamma frequency ranges. These results indicate modified multispectral associations between functional connectivity and behavioural switch costs among visual cortices and key brain regions underlying executive function in cannabis users.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Addiction Biology
Addiction Biology 生物-生化与分子生物学
CiteScore
8.10
自引率
2.90%
发文量
118
审稿时长
6-12 weeks
期刊介绍: Addiction Biology is focused on neuroscience contributions and it aims to advance our understanding of the action of drugs of abuse and addictive processes. Papers are accepted in both animal experimentation or clinical research. The content is geared towards behavioral, molecular, genetic, biochemical, neuro-biological and pharmacology aspects of these fields. Addiction Biology includes peer-reviewed original research reports and reviews. Addiction Biology is published on behalf of the Society for the Study of Addiction to Alcohol and other Drugs (SSA). Members of the Society for the Study of Addiction receive the Journal as part of their annual membership subscription.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信