{"title":"Remarkable Conductivity and Durability of Anion Exchange Membrane With Poly(Fluorene-Terphenyl Piperidinium) Incorporating Graphene Oxide","authors":"Kyu Ha Lee, Ji Young Chu","doi":"10.1155/er/4352185","DOIUrl":null,"url":null,"abstract":"<div>\n <p>We present a series of organic–inorganic composite membranes containing graphene oxide (GO) and quaternized poly(fluorene-terphenyl piperidinium) (QPFTP) polymer to enhance ion conductivity and physicochemical properties. Utilizing the hydrophilic functional groups and robust support of GO, the composite membrane accomplishes improved ion exchange capacity (IEC), swelling ratio, water uptake, and electrochemical performance. The interaction between polymer chains and GO, facilitated by the interface between quaternized ammonium groups on the polymer and oxygen functional groups on the filler support, promotes hydrogen bond formation. Based on our experiments and results, it was proven that the introduction of GO improves the alkaline stability of the membrane, and the optimal GO content was confirmed to be 0.7 wt%. Consequently, the ion conductivity of QPFTP-GO-0.7 reaches 198.2 mS cm<sup>−1</sup>, demonstrating superior performance compared to the pristine membrane (126.5 mS cm<sup>−1</sup>). Furthermore, the single cell performance of QPFTP-GO-0.7 achieves a power density of 347.6 mW cm<sup>−2</sup> in an H<sub>2</sub>/O<sub>2</sub> environment at 60°C. The findings from this research are expected to contribute to the advancement of anion exchange membrane (AEM) technology, offering insights into the design and development of next-generation membranes for sustainable energy applications.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/4352185","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/4352185","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
We present a series of organic–inorganic composite membranes containing graphene oxide (GO) and quaternized poly(fluorene-terphenyl piperidinium) (QPFTP) polymer to enhance ion conductivity and physicochemical properties. Utilizing the hydrophilic functional groups and robust support of GO, the composite membrane accomplishes improved ion exchange capacity (IEC), swelling ratio, water uptake, and electrochemical performance. The interaction between polymer chains and GO, facilitated by the interface between quaternized ammonium groups on the polymer and oxygen functional groups on the filler support, promotes hydrogen bond formation. Based on our experiments and results, it was proven that the introduction of GO improves the alkaline stability of the membrane, and the optimal GO content was confirmed to be 0.7 wt%. Consequently, the ion conductivity of QPFTP-GO-0.7 reaches 198.2 mS cm−1, demonstrating superior performance compared to the pristine membrane (126.5 mS cm−1). Furthermore, the single cell performance of QPFTP-GO-0.7 achieves a power density of 347.6 mW cm−2 in an H2/O2 environment at 60°C. The findings from this research are expected to contribute to the advancement of anion exchange membrane (AEM) technology, offering insights into the design and development of next-generation membranes for sustainable energy applications.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system