{"title":"Hygroelectric Energy Harvesting by Daily Humidity Cycles and its Thermodynamics","authors":"Yusuke Komazaki, Taiki Nobeshima, Hirotada Hirama, Yuichi Watanabe, Kouji Suemori, Sei Uemura","doi":"10.1002/aesr.202400342","DOIUrl":null,"url":null,"abstract":"<p>Atmospheric moisture is emerging as a ubiquitous energy source for energy harvesting. However, a practical long-life device has not been realized, and theoretical aspects including mechanisms and thermodynamics have not been fully clarified. Here, this study provides a practical device and a thermodynamic theory for a concentration cell-based hygroelectric generator (hygroelectric cell, HEC), which enables high-power and long-term electricity generation by day/night humidity changes. Using a Li<sub>1+<i>x</i>+<i>y</i></sub>Al<sub><i>x</i></sub>Ti<sub>2−<i>x</i></sub>Si<sub>y</sub>P<sub>3−<i>y</i></sub>O<sub>12</sub> glass–ceramic solid electrolyte membrane with no water permeability, an ideal HEC without self-discharge is realized. The ideal HEC generates electricity in an outdoor environment for over three months with a maximum power density of 60.4 μW cm<sup>−2</sup> and an average power density of 3.0 μW cm<sup>−2</sup>. The maximum power density in the experimental environment reaches 436 μW cm<sup>−2</sup>. This is 68 times higher than conventional HECs with polymer-based cation-exchange membranes. The ideal HEC can also drive a wireless sensor for more than four months. Furthermore, a thermodynamic model of the ideal HEC, which enables calculations of the maximum work and maximum efficiency, is derived and the model is verified by experiments. This study provides new insights into both thermodynamic theory and device development aspects of the humidity-based energy harvesting.</p>","PeriodicalId":29794,"journal":{"name":"Advanced Energy and Sustainability Research","volume":"6 3","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aesr.202400342","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy and Sustainability Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aesr.202400342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Atmospheric moisture is emerging as a ubiquitous energy source for energy harvesting. However, a practical long-life device has not been realized, and theoretical aspects including mechanisms and thermodynamics have not been fully clarified. Here, this study provides a practical device and a thermodynamic theory for a concentration cell-based hygroelectric generator (hygroelectric cell, HEC), which enables high-power and long-term electricity generation by day/night humidity changes. Using a Li1+x+yAlxTi2−xSiyP3−yO12 glass–ceramic solid electrolyte membrane with no water permeability, an ideal HEC without self-discharge is realized. The ideal HEC generates electricity in an outdoor environment for over three months with a maximum power density of 60.4 μW cm−2 and an average power density of 3.0 μW cm−2. The maximum power density in the experimental environment reaches 436 μW cm−2. This is 68 times higher than conventional HECs with polymer-based cation-exchange membranes. The ideal HEC can also drive a wireless sensor for more than four months. Furthermore, a thermodynamic model of the ideal HEC, which enables calculations of the maximum work and maximum efficiency, is derived and the model is verified by experiments. This study provides new insights into both thermodynamic theory and device development aspects of the humidity-based energy harvesting.
期刊介绍:
Advanced Energy and Sustainability Research is an open access academic journal that focuses on publishing high-quality peer-reviewed research articles in the areas of energy harvesting, conversion, storage, distribution, applications, ecology, climate change, water and environmental sciences, and related societal impacts. The journal provides readers with free access to influential scientific research that has undergone rigorous peer review, a common feature of all journals in the Advanced series. In addition to original research articles, the journal publishes opinion, editorial and review articles designed to meet the needs of a broad readership interested in energy and sustainability science and related fields.
In addition, Advanced Energy and Sustainability Research is indexed in several abstracting and indexing services, including:
CAS: Chemical Abstracts Service (ACS)
Directory of Open Access Journals (DOAJ)
Emerging Sources Citation Index (Clarivate Analytics)
INSPEC (IET)
Web of Science (Clarivate Analytics).