A Semi-Analytic Hybrid Approach for Solving the Buckmaster Equation: Application of the Elzaki Projected Differential Transform Method (EPDTM)

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kabir Oluwatobi Idowu, Abdullateef Adedeji, Adedapo Christopher Loyinmi, Guang Lin
{"title":"A Semi-Analytic Hybrid Approach for Solving the Buckmaster Equation: Application of the Elzaki Projected Differential Transform Method (EPDTM)","authors":"Kabir Oluwatobi Idowu,&nbsp;Abdullateef Adedeji,&nbsp;Adedapo Christopher Loyinmi,&nbsp;Guang Lin","doi":"10.1002/eng2.70044","DOIUrl":null,"url":null,"abstract":"<p>The Buckmaster equation, a nonlinear partial differential equation (PDE) central to modeling the dynamics and deformation of flat fluid plates, presents significant analytical and computational challenges due to its inherent complexity. Traditional solution approaches predominantly rely on numerical methods, which, although effective, are often computationally intensive and face limitations in handling nonlinearity. In this study, we propose and apply the Elzaki projected differential transform method (EPDTM), a semi-analytic approach, to solve the Buckmaster equation. The EPDTM combines the strengths of the Elzaki transform and the projected differential transform method, offering a precise and computationally efficient framework to tackle such nonlinear equations. We present approximate solutions for two specific cases of the Buckmaster equation and generalize our analysis to its broader form. A detailed comparative analysis of the EPDTM results with exact solutions, using tables, 3D plots, and error graphs, demonstrates the negligible absolute errors achieved by the method. Convergence plots further validate the rapid alignment of the EPDTM solutions with the exact solutions, showcasing their accuracy and reliability. Compared with existing numerical methods, EPDTM significantly reduces computational demand while maintaining high precision, even when handling nonlinearity. The findings underscore the potential of the EPDTM as a robust and efficient tool for solving complex nonlinear PDEs such as the Buckmaster equation. This method provides an effective alternative to traditional numerical approaches and opens new opportunities for its application in broader mathematical modeling and scientific domains.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 3","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70044","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The Buckmaster equation, a nonlinear partial differential equation (PDE) central to modeling the dynamics and deformation of flat fluid plates, presents significant analytical and computational challenges due to its inherent complexity. Traditional solution approaches predominantly rely on numerical methods, which, although effective, are often computationally intensive and face limitations in handling nonlinearity. In this study, we propose and apply the Elzaki projected differential transform method (EPDTM), a semi-analytic approach, to solve the Buckmaster equation. The EPDTM combines the strengths of the Elzaki transform and the projected differential transform method, offering a precise and computationally efficient framework to tackle such nonlinear equations. We present approximate solutions for two specific cases of the Buckmaster equation and generalize our analysis to its broader form. A detailed comparative analysis of the EPDTM results with exact solutions, using tables, 3D plots, and error graphs, demonstrates the negligible absolute errors achieved by the method. Convergence plots further validate the rapid alignment of the EPDTM solutions with the exact solutions, showcasing their accuracy and reliability. Compared with existing numerical methods, EPDTM significantly reduces computational demand while maintaining high precision, even when handling nonlinearity. The findings underscore the potential of the EPDTM as a robust and efficient tool for solving complex nonlinear PDEs such as the Buckmaster equation. This method provides an effective alternative to traditional numerical approaches and opens new opportunities for its application in broader mathematical modeling and scientific domains.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信