Severity Scale of Influenza and Acute Respiratory Illness Hospitalizations to Support Viral Genomic Surveillance: A Global Influenza Hospital Surveillance Network Pilot Study

IF 4.2 4区 医学 Q1 INFECTIOUS DISEASES
Bronke Boudewijns, Saverio Caini, Marco Del Riccio, Marta C. Nunes, Sandra S. Chaves, Melissa K. Andrew, Justin R. Ortiz, Oana Săndulescu, Joseph S. Bresee, Elena Burtseva, Daouda Coulibaly, Daria M. Danilenko, Kirill Stolyarov, Anca C. Drăgănescu, Mine Durusu Tanriover, Heloisa I. G. Giamberardino, Parvaiz A. Koul, F. Xavier Lopez-Labrador, Shelly A. McNeil, Ainara Mira-Iglesias, Alejandro Orrico-Sanchez, Nancy A. Otieno, Jorim Ayugi, Sonia M. Raboni, Peter Spreeuwenberg
{"title":"Severity Scale of Influenza and Acute Respiratory Illness Hospitalizations to Support Viral Genomic Surveillance: A Global Influenza Hospital Surveillance Network Pilot Study","authors":"Bronke Boudewijns,&nbsp;Saverio Caini,&nbsp;Marco Del Riccio,&nbsp;Marta C. Nunes,&nbsp;Sandra S. Chaves,&nbsp;Melissa K. Andrew,&nbsp;Justin R. Ortiz,&nbsp;Oana Săndulescu,&nbsp;Joseph S. Bresee,&nbsp;Elena Burtseva,&nbsp;Daouda Coulibaly,&nbsp;Daria M. Danilenko,&nbsp;Kirill Stolyarov,&nbsp;Anca C. Drăgănescu,&nbsp;Mine Durusu Tanriover,&nbsp;Heloisa I. G. Giamberardino,&nbsp;Parvaiz A. Koul,&nbsp;F. Xavier Lopez-Labrador,&nbsp;Shelly A. McNeil,&nbsp;Ainara Mira-Iglesias,&nbsp;Alejandro Orrico-Sanchez,&nbsp;Nancy A. Otieno,&nbsp;Jorim Ayugi,&nbsp;Sonia M. Raboni,&nbsp;Peter Spreeuwenberg","doi":"10.1111/irv.70085","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>This study aimed to establish a Severity Scale for influenza and other acute respiratory infections (ARI), requiring hospitalization, for surveillance and research purposes (the SevScale). Such a scale could aid the interpretation of data gathered from disparate settings. This could facilitate pooled analyses linking viral genetic sequencing data to clinical severity, bringing insights to inform influenza surveillance and the vaccine strain selection process.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>We used a subset of data from the Global Influenza Hospital Surveillance Network database, including data from different geographical areas and income levels. To quantify the underlying concept of severity, an item response model was developed using 16 indicators of severity related to the hospital stay. Each patient in the dataset was assigned a Severity Score and a Severity Category (low, medium, or high severity). Finally, we compared the model scores across different subgroups.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Data from 9 countries were included, covering between 4 and 11 seasons from 2012 to 2022, with a total of 96,190 ARI hospitalizations. Not for all severity indicators data were available for all included seasons. Subgroups with a high percentage of patients in the high Severity Category included influenza A(H1N1)pdm09, age ≥ 50, lower-middle income countries, and admission since the start of the COVID-19 pandemic.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>The initial model successfully highlighted severity disparities across patient subgroups. Repeating this exercise with new, more complete data would allow recalibration and validation of the current model. The SevScale proved to be a promising method to define severity for influenza vaccine strain selection, surveillance, and research.</p>\n </section>\n </div>","PeriodicalId":13544,"journal":{"name":"Influenza and Other Respiratory Viruses","volume":"19 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/irv.70085","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Influenza and Other Respiratory Viruses","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/irv.70085","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INFECTIOUS DISEASES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

This study aimed to establish a Severity Scale for influenza and other acute respiratory infections (ARI), requiring hospitalization, for surveillance and research purposes (the SevScale). Such a scale could aid the interpretation of data gathered from disparate settings. This could facilitate pooled analyses linking viral genetic sequencing data to clinical severity, bringing insights to inform influenza surveillance and the vaccine strain selection process.

Methods

We used a subset of data from the Global Influenza Hospital Surveillance Network database, including data from different geographical areas and income levels. To quantify the underlying concept of severity, an item response model was developed using 16 indicators of severity related to the hospital stay. Each patient in the dataset was assigned a Severity Score and a Severity Category (low, medium, or high severity). Finally, we compared the model scores across different subgroups.

Results

Data from 9 countries were included, covering between 4 and 11 seasons from 2012 to 2022, with a total of 96,190 ARI hospitalizations. Not for all severity indicators data were available for all included seasons. Subgroups with a high percentage of patients in the high Severity Category included influenza A(H1N1)pdm09, age ≥ 50, lower-middle income countries, and admission since the start of the COVID-19 pandemic.

Conclusions

The initial model successfully highlighted severity disparities across patient subgroups. Repeating this exercise with new, more complete data would allow recalibration and validation of the current model. The SevScale proved to be a promising method to define severity for influenza vaccine strain selection, surveillance, and research.

Abstract Image

流感和急性呼吸道疾病住院治疗严重程度支持病毒基因组监测:全球流感医院监测网络试点研究
本研究旨在建立流感和其他需要住院治疗的急性呼吸道感染(ARI)严重程度量表,用于监测和研究目的(SevScale)。这样的量表可以帮助解释从不同环境中收集的数据。这可以促进将病毒基因测序数据与临床严重程度联系起来的汇总分析,为流感监测和疫苗株选择过程提供信息。方法我们使用了来自全球流感医院监测网络数据库的数据子集,包括来自不同地理区域和收入水平的数据。为了量化严重程度的基本概念,使用16个与住院时间相关的严重程度指标开发了项目反应模型。数据集中的每位患者都被分配了严重程度评分和严重程度类别(低、中、高严重程度)。最后,我们比较了不同子组的模型得分。结果纳入了来自9个国家的数据,涵盖2012年至2022年的4至11个季节,共96190例ARI住院。并非所有严重程度指标的数据都适用于所有纳入的季节。高严重级别患者比例较高的亚组包括甲型H1N1流感pdm09、年龄≥50岁、中低收入国家和自COVID-19大流行开始以来入院的患者。最初的模型成功地突出了患者亚组之间的严重程度差异。用新的、更完整的数据重复这个练习将允许对当前模型进行重新校准和验证。SevScale被证明是一种很有前途的流感疫苗毒株选择、监测和研究中定义严重程度的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.50%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Influenza and Other Respiratory Viruses is the official journal of the International Society of Influenza and Other Respiratory Virus Diseases - an independent scientific professional society - dedicated to promoting the prevention, detection, treatment, and control of influenza and other respiratory virus diseases. Influenza and Other Respiratory Viruses is an Open Access journal. Copyright on any research article published by Influenza and Other Respiratory Viruses is retained by the author(s). Authors grant Wiley a license to publish the article and identify itself as the original publisher. Authors also grant any third party the right to use the article freely as long as its integrity is maintained and its original authors, citation details and publisher are identified.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信