Differential analysis of brain functional network parameters in MHE patients

IF 2.8 Q3 ENGINEERING, BIOMEDICAL
Li Song, Yiting Zhang, Xiaoyan Wang, Xucai Ji
{"title":"Differential analysis of brain functional network parameters in MHE patients","authors":"Li Song,&nbsp;Yiting Zhang,&nbsp;Xiaoyan Wang,&nbsp;Xucai Ji","doi":"10.1049/htl2.70004","DOIUrl":null,"url":null,"abstract":"<p>Resting-state functional magnetic resonance imaging, using blood-oxygen-level-dependence signal data and graph theory, was employed to explore brain functional network parameter changes in 32 MHE patients and 21 healthy controls. The Gretna software package and spm8 are used to preprocess and process the data in matlab2012b to calculate the global efficiency (Eg), local efficiency (El), nodal degree (nodal De), nodal clustering coefficient (nodal Cp), nodal shortest path length (nodal Lp), and nodal betweenness (nodal Be) as brain functional network characteristic parameters. The BrainNet View soft is used to draw network maps and present surface-based data. Within the sparsity range of the selected network, A double-sample t-test revealed significant differences about the characteristic parameters in the following brain regions: the Nodal Cp in AAL62, AAL26, AAL43, and AAL47; the De in AAL66, AAL68, AAL47, and AAL74; the nodal Lp in AAL28, the El in AAL62, AAL31, and AAL47; the Eg in AAL28, AAL32, and AAL51, and the nodal Be in AAL28, AAL32, AAL76, and AAL82. These changes in brain network nodes may signal early brain damage in MHE, helping to characterize MHE and predict mental decline in cirrhosis patients.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.70004","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Resting-state functional magnetic resonance imaging, using blood-oxygen-level-dependence signal data and graph theory, was employed to explore brain functional network parameter changes in 32 MHE patients and 21 healthy controls. The Gretna software package and spm8 are used to preprocess and process the data in matlab2012b to calculate the global efficiency (Eg), local efficiency (El), nodal degree (nodal De), nodal clustering coefficient (nodal Cp), nodal shortest path length (nodal Lp), and nodal betweenness (nodal Be) as brain functional network characteristic parameters. The BrainNet View soft is used to draw network maps and present surface-based data. Within the sparsity range of the selected network, A double-sample t-test revealed significant differences about the characteristic parameters in the following brain regions: the Nodal Cp in AAL62, AAL26, AAL43, and AAL47; the De in AAL66, AAL68, AAL47, and AAL74; the nodal Lp in AAL28, the El in AAL62, AAL31, and AAL47; the Eg in AAL28, AAL32, and AAL51, and the nodal Be in AAL28, AAL32, AAL76, and AAL82. These changes in brain network nodes may signal early brain damage in MHE, helping to characterize MHE and predict mental decline in cirrhosis patients.

Abstract Image

MHE患者脑功能网络参数差异分析
采用静息状态功能磁共振成像技术,利用血氧水平依赖性信号数据和图论,探讨32例MHE患者和21例健康对照者脑功能网络参数的变化。利用Gretna软件包和spm8对matlab2012b中的数据进行预处理和处理,计算出全局效率(Eg)、局部效率(El)、节点度(node De)、节点聚类系数(node Cp)、节点最短路径长度(node Lp)和节点间距(node Be)作为脑功能网络特征参数。BrainNet View软件用于绘制网络地图和显示基于表面的数据。在所选网络的稀疏度范围内,双样本t检验显示,AAL62、AAL26、AAL43和AAL47脑区的特征参数存在显著差异;AAL66、AAL68、AAL47、AAL74的De值;AAL28的淋巴结Lp, AAL62、AAL31和AAL47的淋巴结El;AAL28、AAL32、AAL51中的Eg和AAL28、AAL32、AAL76、AAL82中的Be。这些脑网络节点的变化可能是MHE早期脑损伤的信号,有助于表征MHE并预测肝硬化患者的智力下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Healthcare Technology Letters
Healthcare Technology Letters Health Professions-Health Information Management
CiteScore
6.10
自引率
4.80%
发文量
12
审稿时长
22 weeks
期刊介绍: Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信