{"title":"A Combined Model WAPI Indoor Localization Method Based on UMAP","authors":"Jiasen Zhang, Xiaoxun Yang, Wei Zhu, Dongjie Wu, Jiashan Wan, Na Xia","doi":"10.1002/dac.70034","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>With the rapid advancement of the Internet, indoor localization technology has gained increasing importance across various fields. However, the complexity of indoor environments presents significant challenges for achieving precise positioning using GPS or BeiDou systems. As a result, there is a growing demand for innovative localization methods that deliver high accuracy, improved security, and cost-effectiveness. In this study, a dataset comprising 9291 fingerprints collected from a building was processed and split into training and test sets in a 7:3 ratio. To facilitate feature extraction, four algorithms—UMAP, LDA, PCA, and SVD—were employed. Subsequently, six machine learning models (KNN, Random Forest, ANN, SVM, GBDT, and XgBoost) were trained on the training set and evaluated on the test set to compare their performance with different feature extraction algorithms. The objective was to identify the most effective feature extraction method. Model performance was assessed using three metrics: average error, coefficient of determination, and accuracy. Finally, a stacking ensemble model was developed, incorporating the six models as primary learners and selecting the five models with superior predictive performance as secondary learners. This approach aimed to enhance the localization accuracy. UMAP feature extraction significantly improved the prediction accuracy of the indoor localization model, whereas the stacking ensemble model, combining KNN, GBDT, XgBoost, ANN, Random Forest, and SVM as primary learners and Random Forest as the secondary learner, achieved the highest localization accuracy, with an error of approximately 1.48 m.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.70034","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid advancement of the Internet, indoor localization technology has gained increasing importance across various fields. However, the complexity of indoor environments presents significant challenges for achieving precise positioning using GPS or BeiDou systems. As a result, there is a growing demand for innovative localization methods that deliver high accuracy, improved security, and cost-effectiveness. In this study, a dataset comprising 9291 fingerprints collected from a building was processed and split into training and test sets in a 7:3 ratio. To facilitate feature extraction, four algorithms—UMAP, LDA, PCA, and SVD—were employed. Subsequently, six machine learning models (KNN, Random Forest, ANN, SVM, GBDT, and XgBoost) were trained on the training set and evaluated on the test set to compare their performance with different feature extraction algorithms. The objective was to identify the most effective feature extraction method. Model performance was assessed using three metrics: average error, coefficient of determination, and accuracy. Finally, a stacking ensemble model was developed, incorporating the six models as primary learners and selecting the five models with superior predictive performance as secondary learners. This approach aimed to enhance the localization accuracy. UMAP feature extraction significantly improved the prediction accuracy of the indoor localization model, whereas the stacking ensemble model, combining KNN, GBDT, XgBoost, ANN, Random Forest, and SVM as primary learners and Random Forest as the secondary learner, achieved the highest localization accuracy, with an error of approximately 1.48 m.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.