Hanshan Zhang, Yongxiang Li, Xuemeng Xu, Wenji Wei, Kun Shang
{"title":"Research on the Contact Dynamics of Binary Non-Spherical Particles Based on Hertz Theory","authors":"Hanshan Zhang, Yongxiang Li, Xuemeng Xu, Wenji Wei, Kun Shang","doi":"10.1111/jfpe.70070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In the context of pneumatic transport for bulk grains, pneumatic conveying is a critical technique that safeguards the integrity of the transported grains. The utilization of non-spherical bulk grain particles as the conveyed materials within the transport pipeline emphasizes the importance of analyzing their dynamic behavior within the conduit. A geometric reconstruction technique is applied to represent ellipsoidal bulk grain particles, and leveraging gas–solid coupling theory, a motion model for individual particles in the flow field is developed. By incorporating the Hertz contact model with the equations of motion, a contact dynamics framework for binary non-spherical particles is established, which is subsequently subjected to numerical simulations. A comparative analysis of the physical property parameters of four varieties of bulk grain particles—wheat, rice, soybeans, and corn—illustrates the interrelations among their minimum approach distances, normal and tangential forces, contact forces, total capacities, and the Stokes number. During the pneumatic conveying process, wheat exhibits relatively stable characteristics, thereby minimizing the risk of particle fragmentation, while soybeans and corn demonstrate a higher susceptibility to breakage.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"48 3","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.70070","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In the context of pneumatic transport for bulk grains, pneumatic conveying is a critical technique that safeguards the integrity of the transported grains. The utilization of non-spherical bulk grain particles as the conveyed materials within the transport pipeline emphasizes the importance of analyzing their dynamic behavior within the conduit. A geometric reconstruction technique is applied to represent ellipsoidal bulk grain particles, and leveraging gas–solid coupling theory, a motion model for individual particles in the flow field is developed. By incorporating the Hertz contact model with the equations of motion, a contact dynamics framework for binary non-spherical particles is established, which is subsequently subjected to numerical simulations. A comparative analysis of the physical property parameters of four varieties of bulk grain particles—wheat, rice, soybeans, and corn—illustrates the interrelations among their minimum approach distances, normal and tangential forces, contact forces, total capacities, and the Stokes number. During the pneumatic conveying process, wheat exhibits relatively stable characteristics, thereby minimizing the risk of particle fragmentation, while soybeans and corn demonstrate a higher susceptibility to breakage.
期刊介绍:
This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.