Engineering Genome-Free Bacterial Cells for Effective SARS-COV-2 Neutralisation

IF 5.7 2区 生物学
Yutong Yin, Chang Liu, Xianglin Ji, Yun Wang, Juthathip Mongkolsapaya, Gavin R. Screaton, Zhanfeng Cui, Wei E. Huang
{"title":"Engineering Genome-Free Bacterial Cells for Effective SARS-COV-2 Neutralisation","authors":"Yutong Yin,&nbsp;Chang Liu,&nbsp;Xianglin Ji,&nbsp;Yun Wang,&nbsp;Juthathip Mongkolsapaya,&nbsp;Gavin R. Screaton,&nbsp;Zhanfeng Cui,&nbsp;Wei E. Huang","doi":"10.1111/1751-7915.70109","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic has caused unparalleled impacts on global social dynamics, healthcare systems and economies, highlighting the urgent need for effective interventions to address current challenges and future pandemic preparedness. This study introduces a novel virus neutralisation platform based on SimCells (~1 μm) and mini-SimCells (100–200 nm), which are chromosome-free and non-replicating bacteria from an LPS-free <i>Escherichia coli</i> strain (ClearColi). SimCells and mini-SimCells were engineered to display nanobodies on their surface, specifically targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein – a critical immunogenic fragment essential for viral entry into host cells. It was demonstrated that nanobody-expressing SimCells achieved over 90% blocking efficiency against synthesised RBD from both the original Wuhan and the B.1.351 (Beta) variant using competitive enzyme-linked immunosorbent assay (ELISA) assay. More importantly, live virus neutralisation assays demonstrated that NB6 nanobody-presenting mini-SimCells effectively neutralised the live SARS-CoV-2 Victoria variant with an IC50 of 2.95 × 10<sup>9</sup> ± 1.40 × 10<sup>8</sup> mini-SimCells/mL. Similarly, VE nanobody-presenting mini-SimCells effectively neutralised the B.1.351 (Beta) variant of the SARS-CoV-2 virus with an IC50 of 5.68 × 10<sup>9</sup> ± 9.94 × 10<sup>8</sup> mini-SimCells/mL. The mini-SimCells successfully protected Vero cells, a cell line derived from the kidney of an African green monkey, from infection by the live virus of SARS-CoV-2 and its variants. These results suggest that SimCell-based neutralisation offers a promising strategy for the prevention and treatment of SARS-CoV-2, and potentially other viral infections.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70109","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70109","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The COVID-19 pandemic has caused unparalleled impacts on global social dynamics, healthcare systems and economies, highlighting the urgent need for effective interventions to address current challenges and future pandemic preparedness. This study introduces a novel virus neutralisation platform based on SimCells (~1 μm) and mini-SimCells (100–200 nm), which are chromosome-free and non-replicating bacteria from an LPS-free Escherichia coli strain (ClearColi). SimCells and mini-SimCells were engineered to display nanobodies on their surface, specifically targeting the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein – a critical immunogenic fragment essential for viral entry into host cells. It was demonstrated that nanobody-expressing SimCells achieved over 90% blocking efficiency against synthesised RBD from both the original Wuhan and the B.1.351 (Beta) variant using competitive enzyme-linked immunosorbent assay (ELISA) assay. More importantly, live virus neutralisation assays demonstrated that NB6 nanobody-presenting mini-SimCells effectively neutralised the live SARS-CoV-2 Victoria variant with an IC50 of 2.95 × 109 ± 1.40 × 108 mini-SimCells/mL. Similarly, VE nanobody-presenting mini-SimCells effectively neutralised the B.1.351 (Beta) variant of the SARS-CoV-2 virus with an IC50 of 5.68 × 109 ± 9.94 × 108 mini-SimCells/mL. The mini-SimCells successfully protected Vero cells, a cell line derived from the kidney of an African green monkey, from infection by the live virus of SARS-CoV-2 and its variants. These results suggest that SimCell-based neutralisation offers a promising strategy for the prevention and treatment of SARS-CoV-2, and potentially other viral infections.

Abstract Image

有效中和SARS-COV-2的工程无基因组细菌细胞
2019冠状病毒病大流行对全球社会动态、卫生保健系统和经济造成了前所未有的影响,凸显了采取有效干预措施应对当前挑战和未来大流行防范的迫切需要。本研究介绍了一种新的病毒中和平台,该平台基于SimCells (~1 μm)和mini-SimCells (100-200 nm),它们是来自无lps的大肠杆菌菌株(ClearColi)的无染色体非复制细菌。SimCells和mini-SimCells被设计成在其表面显示纳米体,专门针对SARS-CoV-2刺突蛋白的受体结合域(RBD),这是病毒进入宿主细胞所必需的关键免疫原性片段。通过竞争性酶联免疫吸附试验(ELISA)证明,纳米体表达的SimCells对原武汉病毒和B.1.351 (Beta)变体合成的RBD的阻断效率均超过90%。更重要的是,活病毒中和实验表明,呈现NB6纳米体的mini-SimCells有效中和了活的SARS-CoV-2 Victoria变体,IC50为2.95 × 109±1.40 × 108 mini-SimCells/mL。同样,VE纳米体呈递的mini-SimCells有效中和了SARS-CoV-2病毒的B.1.351 (Beta)变体,IC50为5.68 × 109±9.94 × 108 mini-SimCells/mL。迷你模拟细胞成功地保护了Vero细胞(一种从非洲绿猴肾脏中提取的细胞系)免受SARS-CoV-2活病毒及其变种的感染。这些结果表明,基于simcell的中和为预防和治疗SARS-CoV-2以及潜在的其他病毒感染提供了一种有希望的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信