Neurophysiological Treatment Effects of Mesdopetam, Pimavanserin and Amantadine in a Rodent Model of Levodopa-Induced Dyskinesia

IF 2.7 4区 医学 Q3 NEUROSCIENCES
Abdolaziz Ronaghi, Tiberiu Loredan Stan, Sebastian A. Barrientos, Pär Halje, Azat Nasretdinov, Luciano Censoni, Sebastian Sulis Sato, Evgenya Malinina, Joakim Tedroff, Nicholas Waters, Per Petersson
{"title":"Neurophysiological Treatment Effects of Mesdopetam, Pimavanserin and Amantadine in a Rodent Model of Levodopa-Induced Dyskinesia","authors":"Abdolaziz Ronaghi,&nbsp;Tiberiu Loredan Stan,&nbsp;Sebastian A. Barrientos,&nbsp;Pär Halje,&nbsp;Azat Nasretdinov,&nbsp;Luciano Censoni,&nbsp;Sebastian Sulis Sato,&nbsp;Evgenya Malinina,&nbsp;Joakim Tedroff,&nbsp;Nicholas Waters,&nbsp;Per Petersson","doi":"10.1111/ejn.70032","DOIUrl":null,"url":null,"abstract":"<p>Levodopa provides effective symptomatic treatment for Parkinson's disease. However, nonmotor symptoms are often insufficiently relieved, and its long-term use is complicated by motor fluctuations and dyskinesia. To clarify mechanisms of levodopa-induced dyskinesia and pharmacological interventions aimed at reducing dyskinetic symptoms, we have here characterized the neurophysiological activity patterns in sensorimotor and cognitive-limbic circuits in dyskinetic rats, comparing the effects of amantadine, pimavanserin, and the novel prospective antidyskinetic and antipsychotic treatment mesdopetam. Parallel recordings of local field potentials from 11 cortical and subcortical regions revealed suppression of narrowband gamma oscillations (NBGs) in sensorimotor structures by amantadine and mesdopetam in conjunction with alleviation of dyskinetic signs. Concomitant gamma oscillations in cognitive-limbic circuits were not directly linked to dyskinesia and were not affected by antidyskinetic treatments to the same extent, although treatment-induced reductions in functional coupling were observed in both sensorimotor and cognitive-limbic circuits, in parallel. In a broad frequency spectrum (1–200 Hz), mesdopetam treatment displayed greater similarities to pimavanserin than to amantadine. These findings point to the reduction of NBGs as a valuable biomarker for the characterization of antidyskinetic treatment effects and provide systems-level mechanistic insights into the antidyskinetic efficacy of mesdopetam, with potential additional benefits for the treatment of Parkinson's-related psychosis.</p>","PeriodicalId":11993,"journal":{"name":"European Journal of Neuroscience","volume":"61 5","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejn.70032","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejn.70032","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Levodopa provides effective symptomatic treatment for Parkinson's disease. However, nonmotor symptoms are often insufficiently relieved, and its long-term use is complicated by motor fluctuations and dyskinesia. To clarify mechanisms of levodopa-induced dyskinesia and pharmacological interventions aimed at reducing dyskinetic symptoms, we have here characterized the neurophysiological activity patterns in sensorimotor and cognitive-limbic circuits in dyskinetic rats, comparing the effects of amantadine, pimavanserin, and the novel prospective antidyskinetic and antipsychotic treatment mesdopetam. Parallel recordings of local field potentials from 11 cortical and subcortical regions revealed suppression of narrowband gamma oscillations (NBGs) in sensorimotor structures by amantadine and mesdopetam in conjunction with alleviation of dyskinetic signs. Concomitant gamma oscillations in cognitive-limbic circuits were not directly linked to dyskinesia and were not affected by antidyskinetic treatments to the same extent, although treatment-induced reductions in functional coupling were observed in both sensorimotor and cognitive-limbic circuits, in parallel. In a broad frequency spectrum (1–200 Hz), mesdopetam treatment displayed greater similarities to pimavanserin than to amantadine. These findings point to the reduction of NBGs as a valuable biomarker for the characterization of antidyskinetic treatment effects and provide systems-level mechanistic insights into the antidyskinetic efficacy of mesdopetam, with potential additional benefits for the treatment of Parkinson's-related psychosis.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Neuroscience
European Journal of Neuroscience 医学-神经科学
CiteScore
7.10
自引率
5.90%
发文量
305
审稿时长
3.5 months
期刊介绍: EJN is the journal of FENS and supports the international neuroscientific community by publishing original high quality research articles and reviews in all fields of neuroscience. In addition, to engage with issues that are of interest to the science community, we also publish Editorials, Meetings Reports and Neuro-Opinions on topics that are of current interest in the fields of neuroscience research and training in science. We have recently established a series of ‘Profiles of Women in Neuroscience’. Our goal is to provide a vehicle for publications that further the understanding of the structure and function of the nervous system in both health and disease and to provide a vehicle to engage the neuroscience community. As the official journal of FENS, profits from the journal are re-invested in the neuroscientific community through the activities of FENS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信