{"title":"Facile and scalable synthesis of bismuth oxyhalide nanosheets anodes for fast and durable sodium-ion storage","authors":"Shenghui Zhou \n (, ), Zhefei Sun \n (, ), Zilong Zhuang \n (, ), Sifan Wen \n (, ), Haoyu Chen \n (, ), Quanzhi Yin \n (, ), Jianhai Pan \n (, ), Xingqi Chen \n (, ), Jijian Xu \n (, ), Qiaobao Zhang \n (, )","doi":"10.1007/s40843-024-3175-3","DOIUrl":null,"url":null,"abstract":"<div><p>Bismuth oxyhalide (BiOCl) holds promising potential as the anode for sodium-ion batteries (SIBs) due to its high theoretical capacity and unique layered structure. However, its practical applications are hindered by challenges such as large volume variations during cycling, the ambiguous Na<sup>+</sup>-storage mechanism, and complex synthesis methods. Here, we present a facile and scalable strategy to fabricate a high-performance BiOCl nanosheets anode for SIBs. Through comprehensive <i>in-situ</i> and <i>ex-situ</i> microscopic characterizations and electrochemical analysis, we reveal that the sodiation/desodiation process of the BiOCl nanosheets anode leads to the formation of metallic Bi and Na<sub>3</sub>OCl. The metallic Bi acts as an active material for Na<sup>+</sup> storage in subsequent cycles, while the formed Na<sub>3</sub>OCl enhances the stability of the solid-electrolyte interphase (SEI) layer and facilitates Na<sup>+</sup> transport. Additionally, the metallic Bi gradually transforms into a nanoporous structure during cycling, improving Na<sup>+</sup> transport and mitigating volume variations. As a result, the BiOCl nanosheets anode exhibits outstanding electrochemical performance, with impressive rate capability and cycling stability. Furthermore, full cells paired with the Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> (NVP) cathode and pre-cycled BiOCl nanosheets anode also demonstrate a superior rate and cycling performance. This work offers valuable insight into the development of high-performance anodes for advanced SIBs.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":773,"journal":{"name":"Science China Materials","volume":"68 3","pages":"868 - 878"},"PeriodicalIF":6.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40843-024-3175-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Bismuth oxyhalide (BiOCl) holds promising potential as the anode for sodium-ion batteries (SIBs) due to its high theoretical capacity and unique layered structure. However, its practical applications are hindered by challenges such as large volume variations during cycling, the ambiguous Na+-storage mechanism, and complex synthesis methods. Here, we present a facile and scalable strategy to fabricate a high-performance BiOCl nanosheets anode for SIBs. Through comprehensive in-situ and ex-situ microscopic characterizations and electrochemical analysis, we reveal that the sodiation/desodiation process of the BiOCl nanosheets anode leads to the formation of metallic Bi and Na3OCl. The metallic Bi acts as an active material for Na+ storage in subsequent cycles, while the formed Na3OCl enhances the stability of the solid-electrolyte interphase (SEI) layer and facilitates Na+ transport. Additionally, the metallic Bi gradually transforms into a nanoporous structure during cycling, improving Na+ transport and mitigating volume variations. As a result, the BiOCl nanosheets anode exhibits outstanding electrochemical performance, with impressive rate capability and cycling stability. Furthermore, full cells paired with the Na3V2(PO4)3 (NVP) cathode and pre-cycled BiOCl nanosheets anode also demonstrate a superior rate and cycling performance. This work offers valuable insight into the development of high-performance anodes for advanced SIBs.
期刊介绍:
Science China Materials (SCM) is a globally peer-reviewed journal that covers all facets of materials science. It is supervised by the Chinese Academy of Sciences and co-sponsored by the Chinese Academy of Sciences and the National Natural Science Foundation of China. The journal is jointly published monthly in both printed and electronic forms by Science China Press and Springer. The aim of SCM is to encourage communication of high-quality, innovative research results at the cutting-edge interface of materials science with chemistry, physics, biology, and engineering. It focuses on breakthroughs from around the world and aims to become a world-leading academic journal for materials science.