Phenomenology of Holography via Quantum Coherence on Causal Horizons

IF 1.2 3区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
Ohkyung Kwon
{"title":"Phenomenology of Holography via Quantum Coherence on Causal Horizons","authors":"Ohkyung Kwon","doi":"10.1007/s10701-025-00827-4","DOIUrl":null,"url":null,"abstract":"<div><p>There is much recent development towards interferometric measurements of holographic quantum uncertainties in an emergent background space-time. Despite increasing promise for the target detection regime of Planckian strain power spectral density, the foundational insights of the motivating theories have not been connected to a phenomenological model of observables measured in a realistic experiment. This work proposes a candidate model, based on the central hypothesis that all horizons are universal boundaries of coherent quantum information — where the decoherence of space-time happens for the observer. The prediction is inspired by ’t Hooft’s algebra for black hole information that gives coherent states on horizons, whose spatial correlations were shown by Verlinde and Zurek to also appear on holographic fluctuations of causal boundaries in flat space-time (conformal Killing horizons). Time-domain correlations are projected from Planckian jitters whose coherence scales match causal diamonds, motivated by Banks’ framework for the emergence of space-time and locality. The universality of this coherence on causal horizons compels a multimodal research program probing concordant signatures: An analysis of cosmological data to probe primordial correlations, motivated by Hogan’s interpretation of well-known CMB anomalies as coherent fluctuations on the inflationary horizon, and upcoming 3D interferometers to probe causal diamonds in flat space-time. Candidate interferometer geometries are presented, with a modeled frequency spectrum for each design.</p></div>","PeriodicalId":569,"journal":{"name":"Foundations of Physics","volume":"55 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Foundations of Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10701-025-00827-4","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

There is much recent development towards interferometric measurements of holographic quantum uncertainties in an emergent background space-time. Despite increasing promise for the target detection regime of Planckian strain power spectral density, the foundational insights of the motivating theories have not been connected to a phenomenological model of observables measured in a realistic experiment. This work proposes a candidate model, based on the central hypothesis that all horizons are universal boundaries of coherent quantum information — where the decoherence of space-time happens for the observer. The prediction is inspired by ’t Hooft’s algebra for black hole information that gives coherent states on horizons, whose spatial correlations were shown by Verlinde and Zurek to also appear on holographic fluctuations of causal boundaries in flat space-time (conformal Killing horizons). Time-domain correlations are projected from Planckian jitters whose coherence scales match causal diamonds, motivated by Banks’ framework for the emergence of space-time and locality. The universality of this coherence on causal horizons compels a multimodal research program probing concordant signatures: An analysis of cosmological data to probe primordial correlations, motivated by Hogan’s interpretation of well-known CMB anomalies as coherent fluctuations on the inflationary horizon, and upcoming 3D interferometers to probe causal diamonds in flat space-time. Candidate interferometer geometries are presented, with a modeled frequency spectrum for each design.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Foundations of Physics
Foundations of Physics 物理-物理:综合
CiteScore
2.70
自引率
6.70%
发文量
104
审稿时长
6-12 weeks
期刊介绍: The conceptual foundations of physics have been under constant revision from the outset, and remain so today. Discussion of foundational issues has always been a major source of progress in science, on a par with empirical knowledge and mathematics. Examples include the debates on the nature of space and time involving Newton and later Einstein; on the nature of heat and of energy; on irreversibility and probability due to Boltzmann; on the nature of matter and observation measurement during the early days of quantum theory; on the meaning of renormalisation, and many others. Today, insightful reflection on the conceptual structure utilised in our efforts to understand the physical world is of particular value, given the serious unsolved problems that are likely to demand, once again, modifications of the grammar of our scientific description of the physical world. The quantum properties of gravity, the nature of measurement in quantum mechanics, the primary source of irreversibility, the role of information in physics – all these are examples of questions about which science is still confused and whose solution may well demand more than skilled mathematics and new experiments. Foundations of Physics is a privileged forum for discussing such foundational issues, open to physicists, cosmologists, philosophers and mathematicians. It is devoted to the conceptual bases of the fundamental theories of physics and cosmology, to their logical, methodological, and philosophical premises. The journal welcomes papers on issues such as the foundations of special and general relativity, quantum theory, classical and quantum field theory, quantum gravity, unified theories, thermodynamics, statistical mechanics, cosmology, and similar.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信